หลักสูตรและเกณฑ์การฝึกอบรมแพทย์ประจำบ้าน เพื่อวุฒิบัตรแสดงความรู้ความชำนาญในการประกอบวิชาชีพ เวชกรรมสาขาวิชาประสาทศัลยศาสตร์ ## สถาบันประสาทวิทยา **ฉบับ พ.ศ. 2562** ## หลักสูตรและเกณฑ์การฝึกอบรมแพทย์ประจำบ้าน เพื่อวุฒิบัตรแสดงความรู้ความชำนาญในการประกอบวิชาชีพเวชกรรม สาขาวิชาประสาทศัลยศาสตร์ ## สถาบันประสาทวิทยา ฉบับ พ.ศ. 2562 ## ชื่อหลักสูตร (ภาษาไทย) หลักสูตรการฝึกอบรมแพทย์ประจำบ้านเพื่อวุฒิบัตรแสดงความรู้ความชำนาญ ในการประกอบวิชาชีพเวชกรรม สาขาประสาทศัลยศาสตร์ (ภาษาอังกฤษ) Residency training in Neurological Surgery ## ชื่อวุฒิบัตร ## ชื่อเต็ม (ภาษาไทย) วุฒิบัตรเพื่อแสดงความรู้ความชำนาญในการประกอบวิชาชีพเวชกรรม สาขาประสาทศัลยศาสตร์ (ภาษาอังกฤษ) Diploma of the Thai Board of Neurological Surgery ชื่อย่อ (ภาษาไทย) ว.ว. สาขาประสาทศัลยศาสตร์ (ภาษาอังกฤษ) Diploma Thai Board of Neurological Surgery ## หน่วยงานที่รับผิดชอบ หน่วยประสาทศัลยศาสตร์ สถาบันประสาทวิทยา ## พันธกิจของการฝึกอบรม/หลักสูตร หลักสูตรการฝึกอบรมแพทย์ประจำบ้านเพื่อวุฒิบัตรแสดงความรู้ความชำนาญในการประกอบวิชาชีพ เวชกรรมสาขาประสาทศัลยศาสตร์ มีเป้าหมายให้แพทย์ประจำบ้านที่สำเร็จ การฝึกอบรม เป็นประสาทศัลยแพทย์ ที่มี ความรู้ความสามารถและทักษะ ทั้งในด้าน การรักษา การศึกษาต่อเนื่อง การวิจัยพัฒนา ความสามารถในการ ทำงานแบบมืออาชีพปฏิบัติงานแบบสหวิชาชีพเป็นทีมได้ และสามารถบริหารจัดการในการให้บริการผู้ป่วยทาง ประสาทศัลยศาสตร์ได้อย่างสมบูรณ์ครบวงจรตามความต้องการของประเทศไทยและสามารถเทียบเทียมกับ นานาชาติได้ สถาบันประสาทวิทยาเริ่มมีการฝึกอบรมแพทย์ประจำบ้านมาตั้งแต่ พ.ศ.2521 โดยที่แพทยสภาได้อนุมัติ ให้มี โครงการฝึกอบรมแพทย์ประจำบ้านสาขาต่างๆ-ในส่วนของหลักสูตรการฝึกอบรมแพทย์ประจำบ้านสาขาประสาทศัลยศาสตร์นั้น ระยะเริ่มแรกกำหนดระยะเวลาการฝึกอบรมเพียง 3 ปี เท่ากับสาขาอื่นๆ ตามความ ต้องการของประเทศในขณะนั้น แต่ตลอดระยะเวลาที่ผ่านมา วิชาความรู้ทางประสาทวิทยา ประสาทศัลยศาสตร์ และเทกโนโลยี ทางการแพทย์ มีความเจริญก้าวหน้าไปอย่างมากทั้งทางกว้างและทางลึก จึงมีความจำเป็นและ เหมาะสมอย่างยิ่งที่ต้องปรับปรุงหลักสูตร และขยายระยะเวลาในการฝึกอบรมเป็น 5 ปี โดยมีแนวทางให้แพทย์ ประจำบ้านผู้สำเร็จการฝึกอบรมเป็นสูนย์กลาง เพื่อรักษามาตรฐาน ให้ใกล้เคียงกับสากล มีความรู้ความสามารถ แบบมืออาชีพ มีประสบการณ์การผ่าตัดและการดูแลผู้ป่วยอย่างเพียงพอในการที่จะสามารถให้บริการด้าน ประสาทศัลยศาสตร์ อย่างครบถ้วน โดยเฉพาะอย่างยิ่งประสบการณ์การผ่าตัด ตามกำลังทรัพยากรที่มีอยู่ ตอบสนองความต้องการ และความกาดหวังของผู้ป่วย สังคม และชุมชนนั้นๆ นอกจากนี้ยังมุ่งหวังผลิตประสาท ศัลยแพทย์ที่สามารถปฏิบัติงานแบบสหสาขาในประเทศไทย ซึ่งเป็นการเพิ่มศักยภาพในการบริการด้านประสาท ศัลยสาสตร์และลดการส่งต่อผู้ป่วยมารับการรักษาตัวในส่วนกลาง ## ผลลัพธ์ของการฝึกอบรม/หลักสูตร แพทย์ที่จบการฝึกอบรมเป็นแพทย์เฉพาะทางสาขาประสาทศัลยศาสตร์ต้องมีคุณสมบัติและความรู้ ความสามารถขั้นต่ำตามสมรรถนะหลักทั้ง 6 ด้านดังนี้ ## 1) การดูแลรักษาผู้ป่วย (Patient Care) - 1. มีทักษะในการดูแลผู้ป่วยในระยะก่อน ระหว่าง และหลังผ่าตัด รวมทั้งภาวะแทรกซ้อนจากการ ผ่าตัดประสาทศัลยศาสตร์ - 2. มีทักษะในการผ่าตัด สำหรับหัตถการต่างๆ และในผู้ป่วยชนิดต่างๆ - 3. มีทักษะในการดูแลผู้ป่วยบาดเจ็บต่อระบบประสาท (traumatic brain and spine) - 4. มีทักษะในการดูแลผู้ป่วยเนื้องอกระบบประสาท (neoplasm of nervous system) - 5. มีทักษะในการดูแลผู้ป่วยโรคกระดูกสันหลัง (spinal diseases) - 6. มีทักษะในการดูแลและรักษาผู้ป่วยโรคลมชักและความผิดปกติในการทำงานของสมอง (epilepsy and functional neurosurgical diseases) - 7. มีทักษะในการดูแลและรักษาผู้ป่วยโรคหลอดเลือดในสมอง (cerebrovascular diseases) - 8. มีทักษะในการดูแลและรักษาผู้ป่วยเด็กที่มีความพิการในระบบประสาท(pediatric neurosurgical diseases) - 9. มีทักษะในการคูแลและรักษาผู้ป่วยโรคระบบประสาทส่วนปลาย (peripheral nerve diseases) # 2) ความรู้ ความเชี่ยวชาญ และความสามารถในการนำไปใช้แก้ปัญหาของผู้ป่วยและสังคมรอบด้าน (Medical Knowledge and Skills) - 1. เข้าใจวิทยาศาสตร์การแพทย์พื้นฐานของร่างกาย ที่เกี่ยวข้องกับประสาทศัลยศาสตร์ - 2. มีความรู้ความสามารถในวิชาชีพ และเชี่ยวชาญในสาขาประสาทศัลยศาสตร์ ## 3) การเรียนรู้จากการปฏิบัติ และการพัฒนาตนเอง - 1. คำเนินการวิจัยทางการแพทย์และสาธารณสุบได้ - 2. วิพากษ์บทความและงานวิจัยทางการแพทย์ - 3. เรียนรู้และเพิ่มประสบการณ์ได้ด้วยตนเองจากการปฏิบัติ ## 4) ทักษะปฏิสัมพันธ์ และการสื่อสาร (Interpersonal and Communication Skills) - 1. นำเสนอข้อมูลผู้ป่วย และอภิปรายปัญหาอย่างมีประสิทธิภาพ - 2. ถ่ายทอดความรู้และทักษะ ให้แพทย์ นักสึกษาแพทย์ และบุคลากรทางการแพทย์ - 3. สื่อสารให้ข้อมูลแก่ญาติ และผู้ป่วย ได้อย่างถูกต้องและมีประสิทธิภาพ โดยมีเมตตาเคารพ การตัดสินใจและศักดิ์ศรีของความเป็นมนุษย์ - 4. มีมนุษยสัมพันธ์ที่ดี ทำงานกับผู้ร่วมงานทุกระดับอย่างมีประสิทธิภาพ - 5. เป็นที่ปรึกษาและให้คำแนะนำแก่แพทย์และบุคคลากรอื่น โดยเฉพาะทางประสาท สัลยศาสตร์ #### 5) ความเป็นมืออาชีพ (Professionalism) - 1. มีคุณธรรม จริยธรรม และเจตคติอันดีต่อผู้ป่วย ญาติ ผู้ร่วมงาน เพื่อนร่วมวิชาชีพและชุมชน - 2. มีทักษะด้านที่ไม่ใช่เทคนิค (Non-technical skills) และสามารถบริหารจัดการสถานการณ์ที่ เกี่ยวข้องได้เหมาะสม - 3. มีความสนใจใฝ่รู้ และสามารถพัฒนาไปสู่ความเป็นผู้เรียนรู้ต่อเนื่องตลอดชีวิต (continuous professional development) - 4. มีความรับผิดชอบต่องานที่ได้รับมอบหมาย - 5. คำนึงถึงผลประโยชน์ส่วนรวม ## 6) การปฏิบัติงานให้เข้ากับระบบ (System-based practice) - 1. มีความรู้เกี่ยวกับระบบสุขภาพของประเทศ - 2. มีความรู้และมีส่วนร่วมในระบบพัฒนาคุณภาพการคูแลรักษาผู้ป่วย - 3. ใช้ทรัพยากรสุขภาพอย่างเหมาะสม (cost consciousness medicine) และสามารถปรับเปลี่ยน การดูแลรักษาผู้ป่วยให้เข้ากับบริบทของการบริการสาธารณสุขได้ตามมาตรฐานวิชาชีพ #### 6. แผนการฝึกอบรม/หลักสูตร #### 6.1 วิธีการให้การฝึกอบรม ## 1) สมรรถนะการดูแลรักษาผู้ป่วย (Patient Care) จัดตารางการฝึกอบรมได้ตามความเหมาะสม โดยมีการมอบหมายให้ผู้รับ การฝึกอบรมมี ความรับผิดชอบต่าง ๆ ในความควบคุมของอาจารย์ผู้ให้การฝึกอบรมและการเรียนรู้ด้วยตนเอง ดังต่อไปนี้ - 1. การดูแลรักษาผู้ป่วยบาดเจ็บต่อระบบประสาท (traumatic brain and spine) - 2. การดูแลรักษาผู้ป่วยเนื้องอกระบบประสาท (neoplasm of nervous system) - 3. การดูแลรักษาผู้ป่วยโรคกระดูกสันหลัง (spinal diseases) - 4. การดูแลรักษาผู้ป่วยโรคลมชักและความผิดปกติในการทำงานของสมอง (epilepsy and functional neurosurgical diseases) - 5. การดูแลรักษาผู้ป่วยโรคหลอดเลือดในสมอง (cerebrovascular diseases) - 6. มีการดูแลรักษาผู้ป่วยเด็กที่มีความพิการในระบบประสาท(pediatric neurosurgical diseases) - 7. มีการดูแลรักษาผู้ป่วยโรคระบบประสาทส่วนปลาย (peripheral nerve diseases) ## โดยมีการแบ่งระดับการเรียนรู้ดังนี้ - แพทย์ประจำบ้านปีที่ 1 เรียนรู้เกี่ยวกับการดูแลทางศัลยศาสตร์อุบัติเหตุและประสาทศัลย ศาตร์ระดับพื้นฐาน - แพทย์ประจำบ้านปีที่ 2 และ3 เรียนรู้เกี่ยวกับการคูแลทางประสาทศัลยศาสตร์ระดับ ทั่วไป - แพทย์ประจำบ้านปีที่ 4 และ 5 เรียนรู้เกี่ยวกับการดูแลทางประสาทศัลยศาสตร์ระดับ ซับซ้อน - 8. การคำเนินการและการประเมิน (Entrustable professional activities) ตามภาคผนวก ข. ## 2) ความรู้ ความเชี่ยวชาญ และความสามารถในการนำไปใช้แก้ปัญหาของผู้ป่วยและสังคมรอบด้าน (Medical Knowledge and Skills) - 1. แพทย์ประจำบ้านปีที่ 1 เรียนวิทยาศาสตร์การแพทย์พื้นฐานประยุกต์ (Correlated basic medical science) และสัลยศาสตร์ทั่วไป - 2. แพทย์ประจำบ้านปีที่ 2 และ3 เรียนวิทยาศาสตร์การแพทย์พื้นฐานทางประสาท ศัลยศาสตร์ (basic science in neurosurgery) และปฏิบัติงานในสาขาประสาทศัลยศาสตร์ - แพทย์ประจำบ้านปีที่ 4 และ 5 ฝึกปฏิบัติงานในสาขาประสาทศัลยศาสตร์ - 4. แพทย์ประจำบ้านทุกชั้นปี เข้าร่วมในกิจกรรมทางวิชาการ เช่น interesting case, morbidity-mortality conference, journal club เป็นต้น - 5. แพทย์ประจำบ้านทุกชั้นปี ได้รับการฝึกอบรมเกี่ยวกับหัตถการ และ เครื่องมือใหม่ๆ ที่ ใช้ในประสาทศัลยศาสตร์ ### 3) การพัฒนาตนเองและการเรียนรู้จากการปฏิบัติ (Practice-based Learning and Improvement) - 1. มีประสบการณ์การเรียนรู้ในการดูแลผู้ป่วยแบบองค์รวม และสหวิชาชีพ - 2. ปฏิบัติงานสอนแพทย์ประจำบ้านรุ่นหลังได้ - 3. บันทึกข้อมูลในเวชระเบียนผู้ป่วยได้อย่างถูกต้องสมบูรณ์ - 4. ต้องทำงานวิจัย ได้แก่ งานวิจัยแบบ retrospective หรือ prospective หรือ cross-sectional study โดยเป็นผู้วิจัยหลัก ### 4) ความเป็นมืออาชีพ (Professionalism) - 4.1 การบริบาล โดยมีผู้ป่วยเป็นศูนย์กลาง Patient-centered care - (1) การยึดถือประโยชน์ของผู้ป่วยเป็นหลัก - (2) การรักษาความน่าเชื่อ ถือแก่ผู้ป่วย สังคม - การรักษาผู้ป่วยให้ได้ตามมาตรฐานวิชาชีพ - การให้เกียรติและยอมรับเพื่อนร่วมวิชาชีพ เพื่อนร่วมงาน ผู้ป่วย และญาติ - ความสามารถปรับตนเองให้เข้ากับสภาวะหรือเหตุการณ์ที่ไม่คาดคิดไว้ก่อน #### 4.2 พฤตินิสัย - (1) ความรับผิดชอบ และความตรงต่อเวลา - (2) การแต่งกายให้เหมาะสมกับกาลเทศะ - 4.3 จริยธรรมทางการแพทย์ Medical Ethics - (1) การหลีกเลี่ยงการรับผลประโยชน์ส่วนตัว รวมถึงการรับของจากบริษัทผลิตภัณฑ์ ทางการแพทย์ - (2) การนับถือให้เกียรติและสิทธิ รวมทั้ง ความเห็นของผู้ป่วย ในกรณีผู้ป่วยไม่เห็นด้วย กับการรักษาหรือปฏิเสธการรักษา กรณีญาติและผู้ป่วยร้องขอตามสิทธิผู้ป่วย - (3) การขอความยินยอมจากผู้ป่วยในการดูแลรักษาและหัตถการ และเก็บข้อมูลการวิจัย - (4) ในกรณีที่ผู้ป่วยตัดสินใจไม่ได้ต้องสามารถเลือกผู้ตัดสินใจแทนผู้ป่วยได้ - (5) การปฏิบัติในกรณีที่ผู้ป่วยร้องขอการรักษาที่ไม่มีประโยชน์หรือมีอันตราย - (6) การรักษาความลับและการเปิดเผยข้อมูลผู้ป่วย - (7) การประเมินขีดความสามารถ และยอมรับข้อผิดพลาดของตนเอง ## 4.4 การเรียนรู้อย่างต่อเนื่องตลอดชีวิต (1) การกำหนดความต้องการในการเรียนรู้ของตนเอง - (2) การค้นคว้าความรู้ และประเมินความน่าเชื่อถือได้ด้วยตนเอง - (3) การประยุกต์ความรู้ที่ค้นคว้ากับปัญหาของผู้ป่วยใค้อย่างเหมาะสม - (4) การวิเคราะห์และวิจารณ์บทความทางวิชาการ - (5) การเข้าร่วมกิจกรรมวิชาการอย่างสม่ำเสมอ - (6) การใช้ electronic databases และการใช้โปรแกรมคอมพิวเตอร์ในการเรียนรู้ - (7) การถ่ายทอดความรู้แก่แพทย์ บุคลากรทางการแพทย์ นิสิต นักศึกษา ผู้ป่วยและญาติ ## 5) ทักษะปฏิสัมพันธ์ และการสื่อสาร (Interpersonal and Communication Skills) - 5.1 การสร้างความสัมพันธ์ที่ดีระหว่างแพทย์และผู้ป่วย - 5.2 การดูแลผู้ป่วยและญาติในวาระใกล้เสียชีวิต - 5.3 การบอกข่าวร้าย - 5.4 ปัจจัยที่ส่งเสริมความสัมพันธ์ที่ดีระหว่างแพทย์และผู้ป่วย - 5.5 สามารถบริหารจัดการ difficult patient ได้ - 5.6 เข้าใจพื้นฐานความเชื่อทางสุขภาพที่ต่างกัน - 5.7 การสื่อสารกับผู้ป่วย ญาติ และผู้ร่วมงาน - 5.8 การสร้างความสัมพันธ์ที่ดีระหว่างแพทย์และผู้ร่วมงาน #### 6) การปฏิบัติงานให้เข้ากับระบบ (System-based Practice) - 6.1 เข้าใจระบบสุขภาพและการพัฒนาสาธารณสุขของชาติ - 6.2 เข้าใจระบบประกันสุขภาพ เช่น ระบบประกันสุขภาพ ระบบประกันสังคม ระบบ สวัสดิการการรักษาพยาบาลของข้าราชการ ระบบประกันชีวิต เป็นต้น - 6.3 มีส่วนร่วมในการประกันคุณภาพ และกระบวนการ hospital accreditation - 6.4 ประเมินประสิทธิภาพและประสิทธิผลของการคูแลรักษา - 6.5 เป้าใจ cost consciousness medicine - 6.6 เข้าใจความรู้กฎหมายทางการแพทย์ - 6.7 เข้าใจนโยบายการใช้ยาระดับชาติ เช่น
องค์การอาหารและยา บัญชียาหลักแห่งชาติ เป็นต้น ## 7) แพทยศาสตร์ศึกษา - 7.1 หลักสูตรการฝึกอบรมแพทย์ประจำบ้านและแพทย์ประจำบ้านต่อยอด - 7.2 การประเมินแพทย์ประจำบ้านและสถาบันฝึกอบรมแพทย์ประจำบ้าน - 7.3 การประเมินข้อสอบ ## 6.2 เนื้อหาของการฝึกอบรม/หลักสูตร - 1). ความรู้พื้นฐานของประสาทศัลยศาสตร์ และระบบที่เกี่ยวข้อง ใน ภาคผนวกที่ ก. และ ข. - 2). โรคหรือภาวะของผู้ป่วย ## ตามที่กำหนดใน ภาคผนวกที่ ก. 3). หัตถการทางประสาทศัลยศาสตร์ ตามที่กำหนดใน procedural skills ด้านต่างๆ ใน ภาคผนวก ก. #### 6.3 การทำวิจัย ## ขั้นตอนการทำงานวิจัย เพื่อวุฒิบัตร สาขาประสาทศัลยศาสตร์ #### 6.3.1 การทำงานวิจัย แพทย์ประจำบ้านต้องทำงานวิจัย ได้แก่ งานวิจัยแบบ retrospective, prospective หรือ cross sectional อย่างน้อย 1 เรื่อง หรือทำ systematic review หรือ meta-analysis 1 เรื่อง ในระหว่างการปฏิบัติงาน 5 ปี โดยเป็นผู้วิจัยหลัก งานวิจัยดังกล่าวต้องประกอบด้วยหัวข้อหลักดังนี้ - 1. จุดประสงค์ของการวิจัย - 2. วิธีการวิจัย - ผลการวิจัย - 4. การวิจารณ์ผลการวิจัย - บทคัดย่อ #### 6.3.2 ขอบเขตความรับผิดชอบ สถาบันฝึกอบรมจะต้องจัดให้แพทย์ประจำบ้านฝึกการทำวิจัย โดยกำหนดให้ - 1. แพทย์ประจำบ้านปีที่2 ศึกษาทฤษฎีการทำงานวิจัย ตั้งคำถามวิจัย และเตรียมโครงร่าง งานวิจัย ภายใต้การควบคุมของอาจารย์ที่ปรึกษา นำเสนอและสอบโครงร่างการวิจัยกับ คณาจารย์และทำการเสนอขอคำรับรอง จากคณะกรรมการจริยธรรมการวิจัยของ สถาบัน ประสาทวิทยาให้เสร็จสิ้นก่อนทำการวิจัย ในขณะเคียวกันให้แจ้งหัวข้อการวิจัย ให้ประธาน คณะอนุกรรมการฝึกอบรมและสอบฯ - 2. แพทย์ประจำบ้านปีที่3, 4 คำเนินการวิจัยตามมาตรฐาน การคัดเลือกผู้ป่วยการเก็บ ข้อมูลภายใต้การควบคุมของอาจารย์ - 3. แพทย์ประจำบ้านปีที่ 5 คำเนินการวิจัยให้แล้วเสร็จ ทำการวิเคราะห์ผลและจัดทำเล่ม ผลงานวิจัย - 4. สอบป้องกันผลงานวิจัยกับคณาจารย์ของสถาบันเพื่อจบหลักสูตร - 5. ผลงานวิจัยของแพทย์ประจำบ้านทุกคนจะต้องเสนอให้คณะอนุกรรมการฝึกอบรม และสอบฯ สาขา ประสาทศัลยศาสตร์เป็นผู้ประเมินคุณภาพก่อนเพื่อให้คะแนน และเก็บไว้ใช้ ในการสอบเพื่อวุฒิบัตรฯ - 6. นำเสนอผลงานวิจัยในการประชุมวิชาการของสถาบันประสาทวิทยา หรือราช วิทยาลัยฯ หรือที่ประชุมทางการแพทย์อื่นๆ - 7. ตีพิมพ์ผลงานวิจัยในวารสารทางการแพทย์ - 8. แพทย์ประจำบ้านต้องส่งงานวิจัยให้อนุกรรมการ ฝึกอบรมและสอบฯทาง electronic mail และต้องส่งต้นฉบับพิมพ์ให้ราชวิทยาลัยฯเก็บไว้ 1 ฉบับ #### 6.3.3 คุณลักษณะของงานวิจัย - เป็นผลงานที่ริเริ่มใหม่ หรือเป็นงานวิจัยที่ใช้แนวคิดที่มีการศึกษามาก่อนทั้งใน และต่างประเทศ แต่นำมาดัดแปลงหรือทำซ้ำในบริบทของสถาบัน - 2. แพทย์ประจำบ้านและอาจารย์ผู้คำเนินงานวิจัยทุกคน ควรผ่านการอบรมค้าน จริยธรรมการวิจัยในคน และ good clinical practice (GCP) - งานวิจัยทุกเรื่องต้องได้รับการอนุมัติจากคณะกรรมการจริยธรรมการวิจัยฯของสถาบัน - งานวิจัยทุกเรื่อง ควรดำเนินภายใต้ข้อกำหนดของ GCP หรือระเบียบวิจัยที่ ถูกต้องและเหมาะสมกับคำถามวิจัย - 5. ควรใช้ภาษาอังกฤษในการนำเสนอผลงานวิจัยฉบับสมบูรณ์ ## 6.3.4 สิ่งที่ต้องปฏิบัติสำหรับการดำเนินการวิจัยที่เกี่ยวข้องกับผู้ป่วย - 1. เมื่อได้รับการอนุมัติจากคณะกรรมการจริยธรรมการวิจัยแล้ว ต้องดำเนินการทำ วิจัยตามข้อตกลงโดยเคร่งครัด - 2. เมื่อมีการลงนามในเอกสารชี้แจงผู้ป่วยหรือผู้แทนเพื่อให้ยินยอมเข้าร่วมวิจัย ต้อง ให้สำเนาแก่ผู้ป่วยหรือผู้แทนเก็บไว้ 1 ชุด - 3. ให้ระบุในเวชระเบียนผู้ป่วยนอกหรือผู้ป่วยในถึงสถานะการเข้าร่วมงานวิจัยของ ผู้ป่วย - 4. การตรวจหรือรักษาเพิ่มเติมจากโครงการวิจัยที่ผ่านการอนุมัติแล้ว โดยการ กระทำดังกล่าวไม่ได้เป็นส่วนหนึ่งของการคูแลรักษาผู้ป่วยตามปกติ ไม่สามารถทำ ได้ไม่ว่ากรณีใดๆ ทั้งสิ้น ยกเว้นได้มีการระบุและอนุมัติในโครงการวิจัยแล้ว และ ผู้วิจัยหรือคณะผู้วิจัยต้องเป็นผู้รับผิดชอบค่าใช้จ่ายทั้งทางตรงและทางอ้อมที่เกิด ขึ้นกับผู้ป่วยและผู้คูแลผู้ป่วย - 5. กรณีที่ โครงการวิจัยกำหนดให้ทำการตรวจหรือรักษาที่เพิ่มเติมจากการคูแลรักษา ผู้ป่วยตามปกติ หากมีผลลัพธ์ที่อาจส่งผลต่อประโยชน์ให้การคูรักษาผู้ป่วย ให้ ดำเนินการแจ้งคณะกรรมการจริยธรรมการวิจัยเพื่อวางแผนแจ้งผู้ที่เกี่ยวข้อง รับทราบต่อไป - 6. หากเกิดกรณีอื่นนอกเหนือการคาดการณ์ ให้รีบปรึกษาอาจารย์ที่ปรึกษา โครงการวิจัย หรือคณะกรรมการจริยธรรมการวิจัย กรณีที่ไม่สามารถปรึกษาได้ ให้ ย้อนกลับไปใช้หลักพื้นฐาน 3 ข้อ ของจริยธรรมทางการแพทย์ในการตัดสินใจ คือ - 6.1 การถือประโยชน์สุขของผู้ป่วยเป็นหลัก และการไม่ก่อให้เกิดความทุกข์ ทรมานกับผู้ป่วย - 6.2 การเคารพสิทธิของผู้ป่วย - 6.3 การยึดมั่นในหลักความเสมอภาคของทุกคนในสังคมที่จะได้รับบริการทาง การแพทย์ตามมาตรฐาน #### 6.3.5 การรับรอง วุฒิบัตร สาขาประสาทศัลยศาสตร์ ให้มีคุณวุฒิ "เทียบเท่าปริญญาเอก" การรับรองคุณวุฒิหรือวุฒิการศึกษา วุฒิบัตร (ว.ว.) สาขาประสาทศัลยศาสตร์ ให้ "เทียบเท่า ปริญญาเอก" นั้น ถือเป็นสิทธิส่วนบุคคลและของแต่ละสถาบันที่ให้การฝึกอบรม โดยให้เป็นไปตามความสมัคร ใจของแต่ละสถาบันที่ให้การฝึกอบรมฯ และความสมัครใจของแพทย์ประจำบ้านแต่ละรายด้วย หากแพทย์ประจำ บ้านมีความประสงค์ดังกล่าว ตนเองจะต้องแจ้งให้สถาบันฝึกอบรมทราบเป็นลายลักษณ์อักษรก่อนว่าจะรับการ ฝึกอบรมที่มีโอกาสได้รับทั้ง ว.ว.และการรับรองวุฒิดังกล่าวให้ "เทียบเท่าปริญญาเอก" กรณีนี้ผู้เข้าอบรมจะต้อง มีผลงานวิจัยโดยที่เป็นผู้วิจัยหลัก และผลงานนั้นต้องตีพิมพ์ในวารสารที่เป็นที่ขอมรับ ในกรณีที่สถาบันฝึกอบรมฯ ไม่สามารถจัดการฝึกอบรมแพทย์ประจำบ้าน เพื่อให้มีการรับรอง กุณวุฒิ ว.ว. "เทียบเท่าปริญญาเอก" ได้ สถาบันนั้นมีสิทธิ์ที่จะไม่จัดการฝึกอบรมแบบที่มีการรับรองกุณวุฒิให้ "เทียบเท่าปริญญาเอก" ได้ สถาบันนั้นต้องแจ้งให้แพทย์ประจำบ้านทราบตั้งแต่วันเริ่มเปิดรับสมัครเข้าเป็นแพทย์ ประจำบ้านไปจนถึงวันที่เริ่มเปิดการฝึกอบรม ในกรณีที่สถาบันฝึกอบรมใดต้องการให้มีการรับรอง ว.ว. ให้มี กุณวุฒิดังกล่าว แต่มีทรัพยากรจำกัด สถาบันสามารถติดต่อขอความร่วมมือจากอาจารย์และทรัพยากรจากสถาบัน อื่นมาช่วยได้ การที่แพทย์ประจำบ้านสอบผ่านและมีสิทธิ์ ได้รับวุฒิบัตรสาขาประสาทศัลยศาสตร์แล้ว หากมี ความประสงค์จะให้ราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย ดำเนินการออกเอกสารเพื่อรับรองว่า วุฒิบัตร สาขาประสาทศัลยศาสตร์ มีคุณวุฒิ "เทียบเท่าปริญญาเอก" นั้น จะต้องทำให้ผลงานวิจัยหรือส่วนหนึ่ง ของผลงานวิจัยที่ส่งมาให้ราชวิทยาลัยฯ ประกอบการเข้าสอบ ว.ว. ในครั้งนั้น มีลักษณะดังนี้ - 1. ผลงานวิจัยต้องได้รับการตีพิมพ์ 2 เรื่องในระดับชาติและนานาชาติอย่างละ 1 เรื่องเป็น อย่างน้อย ทั้งนี้จะต้องเป็นผลงานวิจัยตีพิมพ์ที่มีคุณภาพตามประกาศ - 2. ให้ใช้ภาษาอังกฤษในการเขียนบทคัดย่อ การตีพิมพ์ในวารสารระดับชาติหรือนานาชาติที่มีคุณภาพที่อยู่นอกเหนือประกาศของ TCI ให้เป็นบทความที่ตีพิมพ์ในวารสารที่ถูกคัดเลือกให้อยู่ใน PubMed, Scopus, Web of Science หรือ Google Scholar หรือในวารสารนานาชาติที่ใช้ภาษาอังกฤษในบทความหรือ ในบทคัดย่อและมีการตีพิมพ์วารสารฉบับนี้มานานเกิน 10 ปี (วารสารเริ่มออกอย่างช้าในปี พ.ศ. 2549 หรือ ค.ศ. 2006) ในกรณีที่ ว.ว. ของท่านได้รับการรับรองว่า "เทียบเท่าปริญญาเอก" ราชวิทยาลัยฯ แนะนำว่าห้าม ใช้คำว่า Ph.D. หรือ ปร.ค. ท้ายชื่อในคุณวุฒิ หรือวุฒิการศึกษา และห้ามเขียนคำว่า คร. นำหน้าชื่อตนเอง แต่สถาบันการศึกษาสามารถใช้ ว.ว. ที่ "เทียบเท่าปริญญาเอก" นี้ มาใช้ให้ท่านเป็นอาจารย์ประจำหลักสูตร การศึกษา อาจารย์รับผิดชอบหลักสูตรการศึกษา อาจารย์คุมวิทยานิพนธ์ หรือเป็นวุฒิการศึกษาประจำสถานศึกษาได้ โดยเสนอให้สถาบันการศึกษาแสดงวุฒิการศึกษาแยกกันดังนี้ - มีอาจารย์ "เทียบเท่าปริญญาเอก" จำนวนกี่ท่าน จาก ว.ว. - มีอาจารย์ "Ph.D หรือ ปร.ค. หรือ ปริญญาเอก" จำนวนกี่ท่าน ดังนั้น วุฒิบัตรฯ หรือ หนังสืออนุมัติฯ ของท่านที่ได้รับการรับรองวุฒิการศึกษานี้ อาจจะมีคำว่า "เทียบเท่าปริญญาเอก" ต่อท้ายได้เท่านั้น #### 6.4 จำนวนปีของการฝึกอบรม 5 ปี #### 6.5 การบริหารการจัดการฝึกอบรม 6.5.1 สถาบันประสาทวิทยา-มีคณะกรรมการซึ่งมีหน้าที่รับผิดชอบและอำนาจในการจัดการ การ ประสานงาน การบริหาร และ การประเมินผล สำหรับแต่ละขั้นตอนของการฝึกอบรม รวมถึงการให้ผู้มีส่วนได้ส่วน เสียที่เหมาะสมมีส่วนร่วมในการวางแผนการฝึกอบรม ประธานแผนการฝึกอบรม/หลักสูตรต้องมีประสบการณ์ใน การปฏิบัติงานในสาขานั้นมาแล้วไม่น้อยกว่า 10 ปี และได้รับการรับรองจากราชวิทยาลัย > 6.5.2 สภาวะการปฏิบัติงาน สถาบันประสาทวิทยา จัดสภาวะการปฏิบัติงานดังต่อไปนี้ - ให้ผู้เข้ารับการอบรมเข้าร่วมกิจกรรมวิชาการ (รวมถึงการปฏิบัติงานนอกเวลาราชการ) ที่ เกี่ยวข้องกับการฝึกอบรม ระบุกฎเกณฑ์และประกาศให้ชัดเจนเรื่องเงื่อนใขงานบริการและ ความรับผิดชอบของผู้เข้ารับการฝึกอบรม - มีการกำหนดการฝึกอบรมทดแทนในกรณีที่ผู้เข้ารับการฝึกอบรมมีการถาพัก (หาเอกสารเพิ่มเรื่อง %) เช่น การถาคลอดบุตร การเจ็บป่วย การเกณฑ์ทหาร การถูกเรียกฝึกกำลังสำรอง การศึกษาดู งานนอกแผนการฝึกอบรม/หลักสูตร เป็นต้น - จัดมีค่าตอบแทนผู้เข้ารับการฝึกอบรมอย่างเหมาะสมกับตำแหน่งและงานที่ได้รับมอบหมาย - ระบุชั่วโมงการทำงานที่เหมาะสม ไม่ควรเกิน 80 ชั่วโมงต่อสัปดาห์ #### 6.6 การวัดและประเมินผล การวัดและประเมินผลผู้เข้ารับการฝึกอบรม ประกอบด้วย ## 1. การวัดและประเมินผลระหว่างการฝึกอบรมและการเลื่อนชั้นปี #### การประเมินระหว่างการฝึกอบรม สถาบันประสาทวิทยา จัดให้มีการประเมินผู้เข้ารับการฝึกอบรมระหว่างการฝึกอบรม ครอบคลุม ทั้งด้านความรู้ ทักษะ เจตคติ และกิจกรรมทางการแพทย์ ในมิติต่างๆ ดังนี้ มิติที่ 1 ประเมินสมรรถนะ EPA ตามที่อฝส.กำหนดโดยอาจารย์ (ภาคผนวกที่ ข.) มิติที่ 2 การจัดสอบโดยสถาบันประจำปี (ผ่าน/ไม่ผ่าน) มิติที่ 3 การรายงานประสบการณ์การผ่าตัดและช่วยผ่าตัดในผู้ป่วย: portfolio มิติที่ 4 การรายงานความก้าวหน้างานวิจัย มิติที่ 5 การร่วมกิจกรรมประชุมวิชาการทางประสาทศัลยศาสตร์ มิติที่ 6 การรายงานประสบการณ์เรียนรู้จาก counseling (ทำเกณฑ์ประเมินของสถาบัน) มิติที่ 7 การประเมินสมรรถนะด้าน professionalism และ interpersonal and communication skills และจริยธรรม โดยอาจารย์และผู้ร่วมงาน (ทำเกณฑ์ประเมินของ สถาบันให้อาจารย์ที่ปรึกษา) ## การบันทึกข้อมูลการประเมินผู้เข้ารับการฝึกอบรมทำโดย - ผู้เข้ารับการฝึกอบรม/สถาบันฝึกอบรม ทำการบันทึกข้อมูลในส่วนที่เกี่ยวข้องลง ใน electronic portfolio ตามที่ราชวิทยาลัยฯ กำหนดในแต่ละปีการศึกษา - สถาบันฝึกอบรมสาขาประสาทศัลยศาสตร์ ทำการบันทึกข้อมูลการประเมินผู้เข้า รับการฝึกอบรมในมิติที่ 1-6 ทั้งรายบุคคลและรายสถาบัน เพื่อรายงานผลมายัง คณะกรรมการฝึกอบรมและสอบฯ ตามที่กำหนด ## ผลการประเมินนำไปใช้ในกรณี ต่อไปนี้ - 1. เพื่อเลื่อนระดับชั้นปี โดยเกณฑ์ผ่านตามที่คณะอนุกรรมการฝึกอบรมและสอบฯ ประกาศกำหนดก่อนการเข้าฝึกอบรม (ตามภาคผนวก ค.) - 2. เพื่อใช้พิจารณาคุณสมบัติผู้เข้าสอบเพื่อวุฒิบัตร ๆ การประเมินระหว่างการ ฝึกอบรมโดยสม่ำเสมอและแจ้งผลให้ผู้เข้ารับการฝึกอบรมรับทราบจะช่วยให้ เกิดการพัฒนาสมรรถนะหลักด้านต่างๆ ของผู้เข้ารับการฝึกอบรมได้สมบูรณ์ขึ้น ## 2. การวัดและประเมินผลเพื่อวุฒิบัตรฯ การสอบเพื่อวุฒิบัตรฯ คุณสมบัติผู้ขอรับการประเมินเพื่อวุฒิบัตร - 1.มีหนังสือรับรองการสอบผ่านหลักสูตรวิทยาศาสตร์พื้นฐานทางประสาทศัลยศาสตร์ของราช วิทยาลัยประสาทศัลยแพทย์ๆ - 2. มีหนังสือรับรองผ่านการฝึกอบรมครบถ้วนจากสถาบันประสาทวิทยา - 3. มีหนังสือรับรอง และ ได้รับการเสนอชื่อเข้าสอบ จากหัวหน้าผู้รับผิดชอบหลักสูตรการ ฝึกอบรม หรือผู้ที่ได้รับมอบหมาย - 4. มีใบรายงานประสบการณ์การผ่าตัด (Log book) รวมตลอดหลักสูตรครบถ้วนตามเกณท์ใน ภาคผนวก ง. 5. มีสำเนานิพนธ์ต้นฉบับซึ่งได้นำเสนอเผยแพร่ในที่ประชุมวิชาการ หรือตีพิมพ์หรืออยู่ระหว่าง รอการตีพิมพ์ในจุลสารหรือ
วารสารทางการแพทย์ เพื่อขอความเห็นชอบรับรองจากคณะอนุกรรมการฝึกอบรม และสอบฯ สาขาประสาทศัลยศาสตร์ #### 3. หลักเกณฑ์และวิธีดำเนินการประเมินและการตัดสินผล ผู้ผ่านการประเมินเพื่อวุฒิบัตรแสดงความรู้ ความชำนาญในการประกอบวิชาชีพเวชกรรมสาขา ประสาทศัลยศาสตร์ ต้องผ่านเกณฑ์ต่อไปนี้ #### 1. การสอบข้อเขียน - 1.1 วิทยาศาสตร์พื้นฐานทางประสาทศัลยศาสตร์ ผู้มีสิทธิสมัครต้องเป็นแพทย์ประจำบ้าน ชับปีที่ 2 จึ๊บไป - 1.2 ประสาทศัลยศาสตร์คลินิก ผู้มีสิทธิสมัครต้องเป็นแพทย์ประจำบ้านชั้นปีที่ 3 ขึ้นไป และ ต้องสอบผ่านวิทยาศาสตร์พื้นฐานทางประสาทศัลยศาสตร์ และต้องผ่านการเสนอ Research proposalในที่ประชุมที่คณะอนุกรรมการฝึกอบรมและสอบฯ สาขาประสาท ศัลยศาสตร์เห็นชอบ หรือเป็นผู้มีสิทธิขอสอบเป็นกรณีพิเศษ - **2. การสอบปากเปล่า** ผู้มีสิทธิสอบปากเปล่าต้องมีคุณสมบัติครบตามเกณฑ์ ข้อ 1และสอบผ่าน ตามเกณฑ์ ข้อ1,1และ1,2 ในกรณีที่ไม่ผ่านการสอบปากเปล่า สามารถขอสอบใหม่ได้เมื่อครบ 6 เดือน - 3. การตัดสินผลการสอบ จะต้องผ่านเกณฑ์การสอบในแต่ละส่วน ภายใต้การพิจารณาของ คณะอนุกรรมการฝึกอบรมและสอบฯ สาขาประสาทศัลยศาสตร์ - 4. การพิจารณาการประเมินเพื่อหนังสืออนุมติ ๆ ผู้ขอรับการประเมินต้องเป็นผู้ได้รับใบอนุญาต เป็นผู้ประกอบวิชาชีพเวชกรรรมตามพระราชบัญญัติวิชาชีพเวชกรรม พ.ศ. 2525 และ - 4.1 การขอรับการสอบเพื่อหนังสืออนุมัติบัตรฯ ผู้มีสิทธิต้องเป็นแพทย์ผู้มีประสบการณ์ เรียนรู้ และปฏิบัติงานในค้านประสาทศัลยศาสตร์ในโรงพยาบาลในประเทศไทยที่มี เกณฑ์ขั้นต่ำเทียบเท่าเกณฑ์ขั้นต่ำในการเปิดสถาบันฝึกอบรม และอนุกรรมการ ฝึกอบรมและสอบฯ ประสาทศัลยศาสตร์รับรอง เป็นเวลาอย่างน้อย 7 ปี - 4.2 เป็นผู้ที่ได้รับหนังสืออนุมัติ หรือวุฒิบัตรเพื่อแสดงความรู้ ความชานาญในการประกอบ วิชาชีพเวชกรรม จากสถาบันในต่างประเทศที่คณะอนุกรรมการฝึกอบรมและสอบฯ สาขาประสาทศัลยศาสตร์ และแพทยสภารับรอง - 4.3 ผู้ขอสอบต้องมีผลงานวิจัยที่คณะอนุกรรมการฝึกอบรมและสอบสาขาประสาท ศัลยศาสตร์เห็นชอบ - 4.4 การสอบให้ปฏิบัติตามข้อ เและ 2 ของการสอบเพื่อวุฒิบัตรฯ ## 7.การรับและคัดเลือกผู้เข้ารับการฝึกอบรม ## 7.1 คุณสมบัติของผู้เข้ารับการฝึกอบรม 1) ผู้เข้ารับการฝึกอบรมจะต้องมีคุณสมบัติดังต่อไปนี้ - ได้รับปริญญาแพทยศาสตรบัณฑิต หรือเทียบเท่าที่แพทยสภารับรอง - เป็นผู้ที่ได้รับใบอนุญาตประกอบวิชาชีพเวชกรรมตามพระราชบัญญัติ วิชาชีพเวชกรรม พ.ศ.2525 - 2) มีคุณสมบัติครบถ้วนตามเกณฑ์แพทยสภาในการเข้ารับการฝึกอบรมแพทย์เฉพาะทาง ## 7.2 การคัดเลือกผู้เข้ารับการฝึกอบรม - 1) รายชื่อคณะกรรมการคัดเลือกผู้เข้ารับการฝึกอบรม - 1.1 ประธานการฝึกอบรม - 12. อาจารย์ผู้ให้การฝึกอบรมจำนวนอย่างน้อย 2 ใน 3 - 2) เกณฑ์การคัดเลือกผู้เข้ารับการฝึกอบรม - 2.1 ประกาศของสถาบันเรื่องเกณฑ์การคัดเลือกกระบวนการคัดเลือก - 2.2 ระบุคุณสมบัติพิเศษที่สอดคล้องกับหลักสูตรการฝึกอบรมแพทย์ประจำบ้าน สาขาประสาท ศัลยศาสตร์ โดยวิธียึดหลักความเสมอภาค โปร่งใส และตรวจสอบได้ ### 7.3 จำนวนผู้เข้ารับการฝึกอบรม ราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย กำหนดให้สถาบันฝึกอบรมรับผู้เข้ารับการฝึกอบรมได้ ในสัดส่วน ตามที่กำหนดตามตารางต่อไปนี้ | จำนวนผู้เข้ารับการฝึกอบรม (ปีละ ชั้นละ) | 1 | 2 | 3 | 4 | |--|------|------|------|------| | อาจารย์ประจำให้การฝึกอบรม(รวมประธานการฝึกอบรม) | 3 | 4 | 5 | 6 | | จำนวนผู้ป่วยผ่าตัดทางประสาทศัลยศาสตร์ | 450 | 650 | 1000 | 1400 | | จำนวนผู้ป่วยในทางประสาทศัลยศาสตร์ | 300 | 500 | 700 | 1000 | | จำนวนผู้ป่วยนอกทางประสาทศัลยศาสตร์ | 1500 | 2500 | 3500 | 5000 | ## อาจารย์ผู้ให้การฝึกอบรม ## 8.1 คุณสมบัติของประธานการฝึกอบรม ต้องเป็นแพทย์ซึ่งได้รับวุฒิบัตร หรือหนังสืออนุมัติเพื่อแสดงความรู้ความชำนาญในการประกอบ วิชาชีพเวชกรรม สาขาประสาทศัลยศาสตร์ และปฏิบัติงานด้านประสาทศัลยศาสตร์ **อย่างน้อย 10 ปี**ภายหลัง ได้รับวุฒิบัตรหรือหนังสืออนุมัติฯ ## 8.2 คุณสมบัติและจำนวนของอาจารย์ผู้ให้การฝึกอบรม ## 8.2.1 คุณสมบัติของอาจารย์ผู้ให้การฝึกอบรม ต้องเป็นแพทย์ซึ่งได้รับวุฒิบัตร หรือหนังสืออนุมัติเพื่อแสดงความรู้ความชำนาญในการ ประกอบวิชาชีพเวชกรรม สาขาประสาทศัลยศาสตร์ และปฏิบัติงานด้านประสาทศัลยศาสตร์ อย่างน้อย 5 ปีภายหลังได้รับวุฒิบัตรหรือหนังสืออนุมัติ ๆ ## 8.2.2 จำนวนอาจารย์ผู้ให้การฝึกอบรม - ต้องมีจำนวนอาจารย์ผู้ให้การฝึกอบรมปฏิบัติงานเต็มเวลา ตามกำหนดตามตารางข้อ7.2 - สถาบันประสาทวิทยากำหนดและดำเนินนโยบายการสรรหาและคัดเลือกอาจารย์ผู้ให้ การฝึกอบรมให้สอดคล้องกับพันธกิจของแผนการฝึกอบรม/หลักสูตร ระบุคุณสมบัติ ของอาจารย์ผู้ให้การฝึกอบรมที่ชัดเจน โดยครอบคลุมความชำนาญที่ต้องการ ได้แก่ คุณสมบัติทางวิชาการ ความเป็นครู และความชำนาญทางคลินิก - สถาบันประสาทวิทยาระบุหน้าที่ความรับผิดชอบ ภาระงานของอาจารย์ และสมคุล ระหว่างงานด้านการศึกษา การวิจัย อาจารย์ต่อผู้เข้ารับการฝึกอบรมให้เป็นไปตาม เกณฑ์ที่แพทยสภากำหนดไว้ อาจารย์จะต้องมีเวลาเพียงพอสำหรับการให้การฝึกอบรม ให้คำปรึกษา และกำกับดูแล นอกจากนั้นอาจารย์ยังต้องมีการพัฒนาตนเองอย่าง ต่อเนื่องทั้งทางด้านการแพทย์และด้านแพทยศาสตรศึกษา สถาบันฯต้องจัดให้มีการ พัฒนาอาจารย์อย่างเป็นระบบ และมีการประเมินอาจารย์เป็นระยะ - ในกรณีที่สัดส่วนของอาจารย์ต่อผู้เข้ารับการฝึกอบรมลดลงกว่าที่ได้รับอนุมัติไว้ สถาบันควรพิจารณาลดจำนวนผู้เข้ารับการฝึกอบรมลงตามความเหมาะสมเพื่อคง คุณภาพการฝึกอบรมไว้ - ภาระงานของอาจารย์แบบไม่เต็มเวลาแต่ละคนต้องไม่น้อยกว่าร้อยละ 50 ของภาระงาน อาจารย์เต็มเวลา - นโยบายการคัดเลือกอาจารย์สอดคล้องกันพันธกิจของสถาบันการฝึกอบรมแพทย์ ประจำบ้าน #### 9. ทรัพยากรทางการศึกษา สถาบันประสาทวิทยากำหนดและดำเนินนโยบายเกี่ยวกับทรัพยากรการศึกษาให้ครอบคลุมประเด็น ต่อไปนี้ - สถานที่และโอกาสในการเรียนรู้ทั้งภาคทฤษฎีและภาคปฏิบัติ การเข้าถึงแหล่งข้อมูลทาง วิชาการที่ทันสมัย สามารถใช้ระบบเทคโนโลยีสารสนเทศและการสื่อสารได้อย่างเพียงพอ มีอุปกรณ์สำหรับฝึกอบรมภาคปฏิบัติและมีสิ่งแวคล้อมทางการศึกษาที่ปลอดภัย - การคัดเลือกและรับรองการเป็นสถานที่สำหรับการฝึกอบรม จำนวนผู้ป่วยเพียงพอและ ชนิดของผู้ป่วยหลากหลายสอดคล้องกับผลลัพธ์ของการเรียนรู้ที่คาดหวัง ทั้งผู้ป่วยนอกและ ในห้องผ่าตัด ผู้ป่วยนอกเวลาราชการและผู้ป่วยวิกฤต การเข้าถึงสิ่งอำนวยความสะดวกทาง คลินิกและการเรียนภาคปฏิบัติที่พอเพียงสำหรับสนับสนุนการเรียนรู้ - สื่ออิเล็กทรอนิกส์สำหรับการเรียนรู้ที่ผู้เข้ารับการฝึกอบรมสามารถเข้าถึงได้มีการใช้ เทคโนโลยีสารสนเทศ และการสื่อสารให้เป็นส่วนหนึ่งของการฝึกอบรมอย่างมีประสิทธิภาพ และถูกหลักจริยธรรม - การจัดประสบการณ์ในการปฏิบัติงานเป็นทีมร่วมกับผู้ร่วมงานและบุคลากรวิชาชีพอื่น - ความรู้และการประยุกต์ความรู้พื้นฐานและกระบวนการทางวิทยาศาสตร์ในสาขาวิชา ที่ฝึกอบรม มีการบูรณาการ และสมคุลระหว่างการฝึกอบรมกับการวิจัยอย่างเพียงพอ - การนำความเชี่ยวชาญทางแพทยศาสตรศึกษามาใช้ในการจัดทำแผนการฝึกอบรม การดำเนินการฝึกอบรม การประเมินการฝึกอบรม - การฝึกอบรมในสถาบันอื่น ทั้งในและนอกประเทศตามที่ระบุไว้ในหลักสูตร ตลอดจน ระบบการโอนผลการฝึกอบรม ### 10. การประเมินแผนการฝึกอบรม/หลักสูตร - 10.1 สถาบันประสาทวิทยากำกับดูแลการฝึกอบรมให้เป็นไปตามแผนการฝึกอบรม/หลักสูตร เป็นประจำ มีกลไกสำหรับการประเมินหลักสูตรและนำไปใช้จริง การประเมินแผนการ ฝึกอบรม/หลักสูตร ต้องครอบคลุม - พันธกิจของแผนการฝึกอบรม/หลักสูตร - ผลลัพธ์การเรียนรู้ที่พึงประสงค์ - แผนการฝึกอบรม - ขั้นตอนการคำเนินงานของแผนการฝึกอบรม - การวัดและประเมินผล - พัฒนาการของผู้รับการฝึกอบรม - ทรัพยากรทางการศึกษา - คุณสมบัติของอาจารย์ผู้ให้การฝึกอบรม - ความสัมพันธ์ระหว่างนโยบายการรับสมัครผู้รับการฝึกอบรมและความต้องการของ ระบบสุขภาพ - สถาบันๆร่วม - 10.2 สถาบันประสาทวิทยาแสวงหาข้อมูลป้อนกลับเกี่ยวกับการฝึกอบรม/หลักสูตร จากผู้ให้การ ฝึกอบรม ผู้เข้ารับการฝึกอบรม นายจ้างหรือผู้ใช้บัณฑิต และผู้มีส่วนได้ส่วนเสียหลัก รวมถึงการใช้ข้อมูลป้อนกลับเกี่ยวกับความสามารถในการปฏิบัติงานของแพทย์ผู้สำเร็จ การฝึกอบรม ในการประเมินการฝึกอบรม/หลักสูตร ## 11. การทบทวน / พัฒนาหลักสูตรการฝึกอบรม สถาบันประสาทวิทยาจัดให้มีการทบทวนและพัฒนาคุณภาพของหลักสูตรฝึกอบรมเป็นระยะๆ ทุก 1 ปีหรืออย่างน้อยทุก 5 ปี ปรับปรุงกระบวนการ โครงสร้าง เนื้อหา ผลลัพธ์ และสมรรถนะของผู้สำเร็จการ ฝึกอบรม รวมถึงการวัดและการประเมินผล และสภาพแวคล้อมในการฝึกอบรม ให้ทันสมัยอยู่เสมอ ปรับปรุงแก้ ข้อบกพร่องที่ตรวจพบ มีข้อมูลอ้างอิง และแจ้งผลการทบทวน และพัฒนาให้แพทยสภารับทราบ ราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย เป็นผู้รับผิดชอบดูแลการฝึกอบรม และทบทวน / พัฒนา หลักสูตรการฝึกอบรมเป็นระยะ ๆ หรืออย่างน้อยทุก 5 ปี และแจ้งผลการทบทวน / พัฒนาให้แพทยสภา รับทราบ #### 12. ธรรมาภิบาลและการบริหารจัดการ - สถาบันประสาทวิทยาบริหารจัดการหลักสูตรให้สอดคล้องกับกฎระเบียบที่กำหนดไว้ใน ด้านต่างๆ ได้แก่ การรับสมัครผู้เข้ารับการฝึกอบรม (เกณฑ์การคัดเลือกและจำนวนที่รับ) กระบวนการฝึกอบรม การวัดและประเมินผล และผลลัพธ์ของการฝึกอบรมที่พึงประสงค์ การ ออกเอกสารที่แสดงถึงการสำเร็จการฝึกอบรมในแต่ละระดับ หรือหลักฐานอย่างเป็นทางการ อื่นๆ ที่สามารถใช้เป็นหลักฐานแสดงการผ่านการฝึกอบรมในระดับนั้นได้ทั้งในประเทศและ ต่างประเทศ - สถาบันประสาทวิทยากำหนดหน้าที่รับผิดชอบและอำนาจในการบริหารจัดการ งบประมาณของแผนการฝึกอบรม/หลักสูตรให้สอดคล้องกับความจำเป็นด้านการฝึกอบรม - สถาบันประสาทวิทยามีบุคลากรที่ปฏิบัติงานและมีความเชี่ยวชาญที่เหมาะสม เพื่อ สนับสนุนการดำเนินการของการฝึกอบรมและกิจกรรมอื่นๆที่เกี่ยวข้อง การบริหารจัดการที่ดี และใช้ทรัพยากรได้อย่างเหมาะสม - สถาบันประสาทวิทยาจัดให้มีให้มีจำนวนสาขาความเชี่ยวชาญทางการแพทย์และ หน่วยงานสนับสนุนค้านอื่นๆที่เกี่ยวข้องครบถ้วน สอคคล้องกับข้อบังคับและประกาศของ แพทยสภาในการเปิดการฝึกอบรม ## 13. การประกันคุณภาพการฝึกอบรม ราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย กำหนดให้สถาบันฝึกอบรมที่จะได้รับการ อนุมัติให้จัดการฝึกอบรม จะต้องผ่านการประเมินความพร้อมในการเป็นสถาบันฝึกอบรม และสถาบันฝึกอบรม จะต้องจัดให้มีการประกันคุณภาพการฝึกอบรมอย่างต่อเนื่องดังนี้ - การประกันคุณภาพการฝึกอบรมภายในสถาบันฝึกอบรมจะต้องจัดให้มีระบบและกลไกการ ประกัน คุณภาพการฝึกอบรมภายใน อย่างน้อยทุก 2 ปี (internal audit) - การประกันคุณภาพการฝึกอบรมภายนอก สถาบันฝึกอบรมจะต้องได้รับการประเมินคุณภาพ จากคณะอนุกรรมการฝึกอบรมฯ อย่างน้อยทุก 5 ปี #### ผนวก ก ## เนื้อหารายละเอียดหลักสูตร - หลักสูตรศัลยศาสตร์ทั่วไปชั้นปีที่ 1 - หลักสูตรประสาทศัลยศาสตร์ชั้นปีที่ 2 3 4 5 #### หลักการของศัลยศาสตร์ #### (Principles of Surgery) หลักการของศัลยศาสตร์ เป็นพื้นฐานทั่วไปที่แพทย์ประจำบ้านทางศัลยศาสตร์ทุกสาขา จะต้องรู้อย่างดี เพื่อ ความเข้าใจในปัญหาพื้นฐานร่วมกันทางศัลยศาสตร์ ซึ่งจะทำให้การดูแล รักษาผู้ป่วยทางศัลยกรรมในองค์รวมได้ เป็นไปอย่างมีประสิทธิภาพ และเป็นความรู้ซึ่งแพทย์ ประจำบ้านจะต้องไปศึกษาอย่างต่อเนื่องตลอดระยะเวลาใน เรื่องต่อไปนี้ - Metabolic Response to Injury - Trauma - Fluid, Electrolyte and Acid-Base Therapy - Hemostasis, Surgical Bleeding and Transfusion - Hemodynamics and Hypertension - Shock - Cardiac Arrest and Resuscitation - Surgical Infection - Antibiotic: Usage and Hazards - Wound Healing and Wound Care - Sutures and Implant in Surgery - Principles of Critical Care - Basic Principles of Oncology - Diabetes and Surgery - Radiotherapy - Chemotherapy ## วิสัญญี่วิทยา #### (Anesthesiology)
แพทย์ประจำบ้านศัลยศาสตร์ทั่วไปต้องมีความรู้พื้นฐานในหลักการทั่วไปของวิสัญญี วิทยา และมีทักษะ ในการคัดเลือกและพิจารณาผู้ป่วยให้เหมาะสมกับวิธีการต่างๆ ของวิสัญญี วิทยา เพื่อให้การรักษาได้ แพทย์ ประจำบ้านต้องมีความรู้และทักษะในเรื่องต่อไปนี้ ได้แก่ - การประเมินผู้ป่วยและความเสี่ยงก่อนผ่าตัด - การให้ Premedication - Anesthetic Agents and muscle Relaxants - ขั้นตอนของการคมยาสลบ - > Induction - ➤ Anesthetic Drugs and Action - ➤ Monitoring - ➤ Reversal - การดูแลผู้ป่วยหลังจากการคมยาสลบ - ปัญหาแทรกซ้อนจากการรักษาทางวิสัญญี่ - การให้ Epidural/ Spinal Anesthesia - Pain Management - -Neuro critical care - -Perioperative care - O Hemodynamic - O Fluid and electrolytes - -Intensive monitoring - O Neurophysiologic monitoring - -Ventilatory care - -Infection control - -Nutrition care #### หัตถการที่ต้องทำได้ - Endotracheal Intubation - Spinal Anesthesia - Local and Regional Anesthesia - Ventilator Setup ## พื้นฐานการวิจัยทางศัลยศาสตร์ #### (Basic Surgical Research & Methodology) แพทย์ประจำบ้านสาขาประสาทศัลยศาสตร์จะต้องมีนิสัยการเรียนรู้อย่างต่อเนื่อง ต้องมี ความรู้พื้นฐาน เกี่ยวกับการวิจัย เนื่องจากความรู้ด้านการแพทย์มีการเปลี่ยนแปลงอยู่ตลอดเวลา ข้อมูลข่าวสารการวิจัยต่างๆ มีอยู่ มากมายจนไม่สามารถอ่านได้หมด จึงมีความจำเป็นที่จะต้อง รู้จักเลือกอ่านข้อมูลที่มีประโยชน์และเชื่อถือได้ สามารถวิเคราะห์ข้อมูลต่างๆ และสรุปความ คิดเห็นได้ ทั้งให้มีความรู้พื้นฐานทางการวิจัยเพื่อนำไปพัฒนาและ ผลิตผลงานวิจัยขึ้นมาได้เอง การฝึกอบรมส่วนนี้กระทำ ในสถาบันที่คณะอนุกรรมการ ฝึกอบรมและสอบฯ สาขาประสาทศัลยศาสตร์ และ/หรือ ราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย รับรอง โดยจัดการอบรมหลักสูตรระยะสั้น เพื่อเป็น ความรู้พื้นฐานทางการวิจัยให้แก่แพทย์ประจำ บ้านประสาทศัลยศาสตร์ ซึ่งจะครอบคลุมความรู้ในเรื่องต่อไปนี้ - Research Questions - Research Designs - Research Designs in Natural History and Risk Factor - Research Designs in Diagnostic Test - Research Designs in Prevention and Treatment - Sample Size Determination - Basic Statistics - Critical Appraisal etc. #### **Clinical Neurology** Part I: Clinical Method of Neurology Part II: Disorders of Motility Pain & Other Disorders of Somatic Sensation, Headache & Pain Disorder of special Senses Epilepsy & Disorders of Consciousness Derangement of Intellectual, Behavior and Language Anxiety and Disorders of Energy, Mood, Emotion, and Autonomic and Endocrine Functions Part III: Growth and Development of the Nervous System and the Neurology of Aging Part IV: Major Categories of Neurological disease - Disturbances of CSF circulation - Intracranial neoplasms - Non Viral infections - Viral infections - Cerebrovascular diseases - Multiplesclerosis and Allied Demyelinative diseases - Inherited Metabolic diseases - Nutritional Deficiency related diseases - Acquired Metabolic Disorders - Drugs & Other Chemical agents - Degenerative diseases - Developmental diseases Part V: Disease of the Spinal Cord, Peripheral nerve and Muscle Part VI: Psychiatric disorders ## รังสีวินิจฉัย, รังสีร่วมรักษา และรังสีรักษา #### (Diagnostic Neuroradiology, Intervention Neuroradiology and Radiation Therapy) แพทย์ประจำบ้านประสาทศัลยศาสตร์ต้องเข้ารับการฝึกอบรมวิชารังสีวิทยา เป็นเวลาอย่าง น้อย 8 สัปดาห์ โดยแบ่งเป็นเข้าฝึกอบรมสาขารังสีวินิจฉัย 4-6 สัปดาห์ , รังสีรักษา 2-4 สัปดาห์ และ Intervention neuroradiology อย่างน้อย 2 สัปดาห์ ## วัตถุประสงค์ เพื่อให้แพทย์ประจำบ้าน สามารถ - 1. อธิบายความรู้พื้นฐานค้านรังสีวินิจฉัยและรังสีรักษา ที่นำมาใช้กับผู้ป่วยประสาท ศัลยศาสตร์ - 2. อ่านและแปลผล CT และ MRI ของสมองและ ใบสันหลัง ใค้ถูกต้อง - 3. อ่านและแปลผล Cerebral angiography ได้ถูกต้อง - 4. อธิบายหลักการพื้นฐานและผลข้างเกียงของการใช้รังสีรักษาในโรคทางประสาท ศัลยศาสตร์ - 5. มีความรู้เกี่ยวกับหลักการเลือกใช้ เทคนิคทาง Intervention neuroradiology ได้อย่าง เหมาะสม เนื้อหาวิชา - Radiology of the skull & spine - Application of Computed Tomography and Magnetic Resonance Imaging in Neurosurgical disease - Ultrasonography - Cerebral angiography - Basic radiation therapy - Application of radiotherapy for neurosurgical disease - Application of intervention radiology for appropriate neurosurgical disease ## ประสบการณ์การเรียนรู้ - ๑. อ่านและแปลผล ทางรังสีวินิจฉัยร่วมกับอาจารย์ที่คูแล - ๒. มีส่วนร่วมในการใช้เครื่อง CT scan และ MRI เพื่อให้ได้ภาพที่เหมาะสมกับโรคของ ผู้ป่วย - ๑. ช่วยหัตถการ Cerebral angiography ภายใต้การกำกับคูแลของอาจารย์ที่ปรึกษา - ๔. ดูแลและวางแผนการรักษาผู้ป่วยด้านประสาทศัลยศาสตร์ด้วยรังสีรักษา ร่วมกับ อาจารย์ที่ปรึกษา การประเมิน - สามารถอ่านผลทางรังสีวินิจฉัยด้าน Plain skull, Spine, MRI และ CT scan - แปลผล Cerebral angiography ได้ด้วยตนเอง ## หลักสูตรประสาทศัลยศาสตร์ชั้นปีที่ 2 - 3 - 4 - 5 #### BASIC TOPICS - ➤ Neuroanatomy - ➤ Neurophysiology - ➤ Neuropathology - ➤ Neuropharmacology - ➤ Neurology - ➤ Neuroradiology #### GENERAL CLINICAL TOPICS - ➤ Fluid, Electrolytes, and Nutrition - ➤ General Critical Care - ➤ Infection - ➤ Practice Management, Legal, and Socioeconomic Issues #### NEUROSURGICAL CLINICAL TOPICS - ➤ Cerebrovascular Surgery - ➤ Neurosurgical Oncology - ➤ Neurotrauma and Neurosurgical Critical Care - ➤ Pain Management - ➤ Pediatric Neurosurgery - ➤ Surgery of the Peripheral Nervous System - ➤ Spinal Surgery - ➤ Stereotactic and Functional Neurosurgery #### **BASIC TOPICS** #### **NEUROANATOMY** **UNIT OBJECTIVES** Demonstrate knowledge of anatomy that is pertinent to the diagnosis of diseases of the nervous system and the practice of neurological surgery. #### COMPETENCY-BASED KNOWLEDGE OBJECTIVES: #### ชั้นปีที่ 2-3: #### General - 1. Review the embryological development of the brain, cerebellum, brain stem, glial elements, spinal cord, conus medullaris, cauda equina, sympathetic and parasympathetic systems and the peripheral nervous system. - 2. Discuss the embryologic development of the skull, craniovertebral junction, and spine. - 3. Describe and differentiate the different types of neurons. - 4. Discuss the microanatomy of the neuron including the: - cell body - dendritic process - axonal process - 5. Diagram and describe the microanatomy of the synapse. - 6. List the microglial elements and review their microanatomy: - astrocytes - oligodendrocytes - microglia - ependyma - choroid epithelium - 7. Diagram and describe in detail the carotid and vertebral arteries and their branches which provide blood supply to the face, scalp, skull, meninges, brain, brain stem, cerebellum, and rostral spinal cord. - 8. Discuss in detail the arterial blood supply to the spinal cord. Include in the discussion the spinal and radicular arteries and the concept of watershed ischemia. - 9. Identify and review the venous drainage of the central nervous system. - 10. List and identify the bones of the skull. - 11. Describe each of the sutures of the skull. - 12. Identify each named foramen of the skull and list its contents. - 13. Describe the anatomy of the meninges including the: - dura mater - arachnoid mater - pia mater - 14. Describe the anatomy of the dura including the falx cerebri and tentorium. - 15. Review the layers of the scalp and discuss its innervation. - 16. Diagram the cerebral ventricles. - 17. Discuss the major arachnoid cisterns. - 18. Review the anatomy of the arachnoid villi. - 19. Discuss the anatomic correlates pertinent to the production, flow, and reabsorption of cerebrospinal fluid. - 20. Identify and describe the gross anatomy of the spine including: - atlas - axis - subaxial cervical vertebrae - thoracic vertebrae - lumbar vertebrae - sacrum - coccyx - intervertebral disc complex - supporting ligaments of the spine - 21. List the muscles related to the skull and spine. - 22. Describe the gross anatomy of the neck. - 23. Discuss the anatomical basis for the blood-brain barrier in detail. #### **Central Nervous System** - 1. Describe the gross anatomy of the brain, brain stem, cerebellum, cranial nerves, and spinal cord in detail. - 2. Describe the anatomy of the cerebral cortex in detail including: - cortical layers - sensory areas - motor areas - prefrontal cortex - fiber tracts - calcarine cortex - 3. Describe the anatomy of the olfactory pathways, hippocampal formation and amygdala in detail including: - rhinencephalon - olfactory pathways - anterior commissure - hippocampal formation (including cytoarchitecture) - amygdala - limbic system - 4. Describe the anatomy of the corpus striatum in detail including: - striatum - globus pallidus - claustrum - subthalamic region - striatal afferent and efferent connections - pallidal afferent and efferent connections - pallidofugal fiber systems - 5. Describe the anatomy of the hypothalmus and pituitary in detail including: - cytoarchitecture of the hypothalamus - afferent and efferent connections of the hypothalmus - supraoptic nuclei and tracts - hypophysial portal system - anatomy of the pituitary stalk - anterior and posterior pituitary - cellular organization of the anterior pituitary - hormonally active cells of the hypothalmus and pituitary - 6. Describe the anatomy of the diencephalon in detail including: - midbrain-dienencephalon junction - caudal diencephalon - epithalamus - thalamus (including nuclei) - thalamic radiations - internal capsule - visual pathways - 7. Describe the anatomy of the cerebellum in detail including: - cerebellar cortex including organization - deep cerebellar nuclei - cerebellar connections - cerebellar peduncles - 8. Describe the anatomy of the mesencephalon in detail including: - superior colliculus - inferior colliculus - pretectal region - posterior commissure - mesencephalic nuclei - oculomotor nerve - tegmentum - mesencephalic reticular formation - substantia nigra - ascending and descending tracts - 9. Describe the anatomy of the pons in detail including: - vestibulocochlear nerve - facial nerve - abducens nerve - trigeminal nerve - ascending and descending tracts - 10. Describe the anatomy of the medulla in detail including: - olivary nucleus - medullary reticular formation - cranial nerves of the medulla - ascending and descending tracts - 11. Review the location and connections of each cranial nerve nuclei- Trace the course of each
cranial nerve from nucleus to end organ termination- - 12. Describe the external topography and landmarks of the fourth ventricle- - 13. Describe the anatomy of the spinal cord in detail including: - nuclei and cell groups - cytoacrchitectural lamination (Rexed laminae) - somatic and visceral efferent neurons - posterior horn neurons - descending tracts - ascending tracts - upper and lower motor neurons - somatotopic organization #### **Autonomic Nervous System** - 1. Distinguish pre- and postganglionic neurons. - 2. Describe the sympathetic nervous system. - 3. Describe the parasympathitic nervous system. - 4. Review the visceral afferent fibers. - 5. Describe the structure of the autonomic ganglia. - 6. Discuss the central autonomic pathways. #### **Peripheral Nervous System** - 1. Differentiate between segmental and peripheral innervation. - 2. Diagram the anatomy of the spinal nerve root. - 3. Diagram and dDiscuss the cervical, brachial, and lumbosacral plexi. - 4. Outline the anatomy of the major peripheral nerves of the upper and lower extremity including: - axillary - suprascapular - median - ulnar - radial - long thoracic - musculocutaneous - lateral femoral cutaneous - femoral - obturator - sciatic - saphenous - peroneal - tibial - 5. Describe the microanatomy of the peripheral nerves in detail - 6. Explain the difference between myelinated and unmyelinated nerves - 7. Review the anatomy of the Schwann cell - 8. List the peripheral afferent receptors and describe the anatomy of each - 9. Segregate peripheral neurons by size and explain the rationale for such a classification scheme- #### Muscle - 1. Explain the concept of the motor unit. - 2. Describe the anatomy of the motor end plate. - 3. Describe the microscopic anatomy of striated and smooth muscle. - 4. Discuss the subcellular components of muscle. ### ชั้นปีที่ 4: - 1. Discuss the clinical presentation in anatomical terms of syndromes of the brain and its coverings including: - epidural hematoma - acute subdural hematoma - chronic subdural hematoma - subgaleal hematoma - injury to innervation of the scalp - 2. Discuss the syndromes produced by mass lesions affecting the cranial nerves including: - suprasellar lesions - lesion of jugular foramen - lesion of internal auditory canal - lesions or distortion at the incisura - 3. Review the expected effects of stroke or mass lesion at different locations within the brain stem and cerebellum. - 4. List the expected effects of destructive lesions in the basal ganglia and cerebellum. - 5. Describe the expected effects of ischemic or destructive lesions of the white matter tracts of the cerebrum. - 6. Discuss the expected effect of destructive lesions of specific regions of the cerebral cortex. - 7. Review the clinical presentation of strokes in the distribution of the supratentorial cerebral blood vessels. - 8. Discuss the relationship of the spinal nerves to the vertebral level of exit. - 9. Diagram the structures comprising the boundaries of the spinal neural foramina. - 10. Discuss the clinical manifestation of injury for each of the major peripheral nerves. - 11. Describe the anatomy and presentation of common entrapment syndromes of peripheral nerves including: - thoracic outlet syndrome - carpal tunnel syndrome - ulnar nerve entrapment syndrome at wrist and elbow - anterior interosseous syndrome - posterior interosseous syndrome - meralgia paresthetica - peroneal nerve palsy - tarsal tunnel syndrome - 12. Describe the surgical exposure of common peripheral nerve entrapments including: - carpal tunnel - ulnar nerve at elbow - ulnar nerve at wrist - lateral femoral cutaneous nerve - peroneal nerve - 13. Discuss the clinical presentation and neurological deficits associated with common lesions of and injuries to the spinal cord and nerve roots. # COMPETENCY-BASED PERFORMANCE OBJECTIVES: ชั้นที่ที่ 4: - 1. Identify at the time of surgery: - occipital artery - superficial temporal artery - frontalis muscle - pterion - inion - asterion - coronal suture - sagittal suture - middle meningeal artery - sagittal sinus - transverse sinus - foramen rotundum - foramen ovale - foramen spinosum - superior orbital fissure - jugular foramen - internal auditory canal - superior sagittal sinus - sigmoid sinus - incisura - each cranial nerve - each named cerebral artery and vein - components of the brain stem - named structures on the floor of the fourth ventricle - Foramina of Magendie and Luschka - cerebral peduncles - components of the cerebellum - cerebellar tonsils - brachium cerebelli - vermis - major supratentorial gyri - supratentorial lobes - sylvian fissure - central sulcus - 2. Identify at the time of surgery structures visible in the lateral ventricles including: - Foramen of Monro - fornix - caudate - thalamus - choroidal fissure - named veins - glomus of the choroid plexus - hippocampus - 3. Identify the parts of the vertebral column, spinal cord, and nerve roots at the time of surgery including: - spinous process - lamina - superior facet - inferior facet - pedicle - pars interarticularis - uncovertebral joint - neural foramen and nerve root - nerve root ganglion - disc space - vertebral artery - dorsal column and lateral column of spinal cord - intradural afferent and efferent rootlets #### **NEUROPHYSIOLOGY** #### **UNIT OBJECTIVES** Demonstrate knowledge of physiology that is pertinent to the understanding of neurological disease. #### **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** #### ชั้นปีที่ 2-3 และ ชั้นปีที่ 4: - 1. Review the basic biology of the nerves including: - synthesis and movement of proteins in the nerve - membrane potential and membrane properties - ion channels - generation and conduction of an action potential - 2. Discuss synaptic transmission including: - types of synaptic transmission - transmitter release - nerve-muscle transmission - chemical messengers - direct gated receptors - second messenger linked receptors - 3. Describe the physiology of the sensory systems including: - sensory receptor physiology - anatomy of somatic sensory system - coding of modality specific sensory information - pain and analgesia - cortical integration of sensory perception - visual system - **processing of information in the retina** - processing of vision in the central visual pathways - > columnar units of visual cortex - **>** processing in the geniculate nucleus - ➤ visual perception of motion and form. - auditory system. Within this description review the processing of hearing in the cochlea and the central auditory pathways. - olfaction and taste - 4. Discuss the physiology of the motor system including: - mechanisms of muscle contraction - muscle receptors, spinal reflexes - spinal reflexes concerned with position - brain stem reflexes controlling motion - vestibular nuclei control of movement and posture - red nucleus control of movement - cortical control of movement - cerebellar control of movement - regional and cellular organization of the cerebellum - functional divisions of the cerebellum - the role of the cerebellum in planning movement - basal ganglia - the anatomy of basal ganglia pathways - reural transmitters in the circuits within the basal ganglia - thalamus - 5. Describe the attributes of the autonomic nervous system including both the sympathetic and parasympathetic systems. - 6. Review the physiological basis of arousal and emotion. Include within this review the: - noradrenergic systems - limbic system. Include within this review the physiologic basis for emotion and memory - sleeping and sleep states - reticular activating system - 7. Describe the higher cortical functions including: - anatomy of language - function of association cortex - 8. Describe the physiological basis for cerebrospinal fluid production and reabsorption. - 9. Review the physiological control of the cerebral vasculature. - 10. Discuss, in detail, the physiology of the hypothalamus and pituitary, particularly as related to endocrinology. #### **NEUROPATHOLOGY** #### **UNIT OBJECTIVES** Demonstrate knowledge of neuropathology that is pertinent to the diagnosis of diseases of the nervous system and practice of neurological surgery. #### **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** ชั้นปีที่ 4: #### **General Neuropathology** - 1. Describe the techniques available for examination of surgical specimens from central nervous system, peripheral nervous system, skeletal muscle, pineal and pituitary. - 2. Review the use of standard chromatic, histochemical and selected immunohistochemical stains employed in the evaluation of surgical specimens from the central nervous system, peripheral nervous system, skeletal muscle, pineal and pituitary. - 3. List the techniques available for morphological examination of cerebrospinal fluid and the abnormalities observed in cerebrospinal fluid from patients with meningeal carcinomatosis, meningeal lymphomatosis, pyogenic meningitis and aseptic meningitis. #### **Central Nervous System** - 1. Describe the gross and histopathological features and, when applicable, the genetic basis of the following congenital and perinatal disorders: - encephaloceles and cranial meningoceles - myelomeningoceles and meningoceles - hydromyelia - diastematomyelia and diplomyelia - syringomyelia and syringobulbia - Chiari I malformation - Chiari II malformation - Dandy-Walker malformation - arachnoid cysts - porencephaly - aqueductal stenosis - subependymal germinal matrix hemorrhages - posthemorrhagic hydrocephalus - periventricular leukomalacia (white matter infarcts) - 2. Describe the gross and histopathological features and characteristics of the causative agents of the following infectious diseases: - cranial and spinal epidural abscesses - cranial and spinal subdural abscesses - pyogenic bacterial meningitis and ventriculitis - brain abscesses - tuberculous meningitis and tuberculomas - central nervous system sarcoidosis - central nervous system cryptococcosis - central nervous system - central
nervous system toxoplasmosis - central nervous system cysticercosis - Herpes simplex encephalitis - central nervous system HIV infections - central nervous system cytomegalovirus infection - 3. Describe the gross and histopathological features of the following vascular lesions: - acute, subacute, and remote infarcts - border zone and watershed infarcts - manifestations of embolic infarcts including those secondary to atheromatous embolization and embolization from extracoporeal pumps - vasculitis including temporal arteritis, primary central nervous system vasculitis, granulomatous angiitis, and Wegener's granulomatosis - moyamoya - hypertensive intracerebral hemorrhages - lobar intracerebral hemorrhages - amyloid angiopathy - malformations including arteriovenous malformations, cavernous angiomas, venous angioma and capillary telangiectases - Vein of Galen "aneurysms" - saccular aneurysms - infectious ("mycotic") aneurysms - giant aneurysms - traumatic and dissecting aneurysms - venous and dural sinus occlusive disease - vascular malformations of the spinal cord - spinal cord infarcts - 4. Describe the gross and histopathological features of the following traumatic lesions: - skull fractures - entrance and exit gunshot wounds of the skull - gunshot wounds of the brain including internal ricochet - epidural hematomas - acute subdural hematomas - chronic subdural hematomas - recent and remote cerebral contusions - traumatic intraparenchymal hemorrhages - diffuse axonal injury - traumatic cranial nerve injuries - spinal cord injuries - cerebral herniation syndromes - fat embolization - central nervous system trauma in infancy - central nervous system radiation injuries - manifestations of prior surgical intervention - 5. Describe the gross and histopathological features and, when applicable, the metabolic basis for the following intoxications and deficiency states: - hypoxic-anoxic encephalopathy - carbon monoxide intoxication - ethanol intoxication - alcoholic cerebellar degeneration - central pontine myelinolysis - CNS complications of diagnostic agents including contrast material - CNS complications of antimicrobial therapy - CNS complications of antineoplastic therapy - CNS complications of "street drugs" - Wernicke's encephalopathy and thiamine deficiency - Subacute combined degeneration and B12 deficiency - 6. Describe the gross and histopathological features of the following demyelinating diseases: - multiple sclerosis - progressive multifocal leukoencephalopathy - HIV vacuolar myelopathy - postinfectious encephalomyelitis - 7. Describe the gross and histopathological features and the metabolic basis for the following leukodystrophies: - adrenoleukodystrophy and adrenomyeloneuropathy - Krabbe's disease - metachromatic leukodystrophy - 8. Describe the gross and histopathological features and, when applicable, the genetic basis for the following dementias and degenerations: - Alzheimer's disease including familial forms - vascular dementia including Binswanger's disease and cerebral autosomal dominant arteriopathy (CADASIL) - Pick's disease - other fronto-temporal dementias - Creutzfeldt-Jacob disease and other prion diseases - Parkinson's disease - diffuse Lewy body disease - Huntington's disease - amyotrophic lateral sclerosis - paraneoplastic degenerative diseases - 9. Describe the gross and histopathological features and, when applicable, the biochemical and genetic basis for the following metabolic diseases: - Wilson's disease - Tay Sachs disease and other GM-2 gangliosidoses - neuronal ceroid-lipofuscinoses - hepatic encephalopathy - Reye's syndrome - 10. stopathological features and, when applicable, the grading criteria for the following central nervous system neoplasms: - diffuse fibrillary astrocytomas - gemistocytic astrocytomas - anaplastic astrocytomas - glioblastoma multiforme including giant cell glioblastoma and gliosarcomas - pilocytic astrocytomas including cerebellar, diencephalic, dorsal exophytic pontine, and cerebral pilocytic astrocytomas - subependymal giant cell astrocytomas - pleomorphic xanthoastrocytoma - oligodendrogliomas including anaplastic oligodendrogliomas and mixed oligoastrocytomas - ependymomas including myxopapillary ependymomas - subependymomas - choroid plexus tumors - colloid cysts - gliomatosis cerebri - gangliocytomas and gangliogliomas - dysembryoplastic neuroepithelial neoplasms - central neurocytomas - medulloblastomas - atypical teratoid/rhabdoid tumors - primitive neuroectodermal tumors and cerebral neuroblastomas - olfactory neuroblastoma - spinal paragangliomas - meningiomas including meningothelial (syncytial) fibrous, transitional, psammomatous, angiomatous, and papillary meningiomas - anaplastic and malignant meningiomas - meningeal hemangiopericytomas - other meningeal mesenchymal tumors - meningeal melanomatosis and melanomas - hemangioblastomas - lipomas - primary central nervous system lymphomas - metastatic carcinomas including leptomeningeal carcinomatosis - teratomas - dermoids and epidermoids - schwannomas including acoustic neurinomas or vestibular schwannomas, schwannomas of other cranial nerves, and spinal root schwannomas - 11. Describe the gross and histopathological features and the genetic basis for the following tumor syndromes: - Neurofibromatosis type 1 - Neurofibromatosis type 2 - von Hippel-Lindau syndrome - Tuberous sclerosis - Cowden syndrome - Turcot syndrome ## **Peripheral Nervous System** - 1. Describe the gross and histopathological features and, when applicable, the genetic and biochemical basis for the following disorders of peripheral nerves: - compressive and traumatic neuropathies - leprosy - diabetic and uremic neuropathy - Charcot-Marie-Tooth disease - Guillain-Barre syndrome - sympathetic dystrophy - 2. Describe the gross and histopathological features of the following neoplastic and tumorous disorders of peripheral nerves: - peripheral schwannoma - neurofibromas - malignant peripheral nerve sheath tumors - spinal root and peripheral nerve root cysts ### **Pituitary and Pineal** - 1. Describe the gross and histopathological features of the following pituitary conditions: - pituitary adenomas including null cell adenomas, growth hormone secreting adenomas, prolactin secreting adenomas, ACTH secreting adenomas, and oncocytomas - craniopharyngiomas including adamantinomatous and squamopapillary craniopharyngiomas - Rathke pouch (cleft) cysts - pituitary involvement by metastatic neoplasms - lymphocytic hypophysitis - pituitary infarcts including pituitary "apoplexy" - pituitary lesions resulting from closed head trauma - empty sella syndromes - 2. Describe the gross and histopathological features of the following lesions of the pineal: - germinomas - teratomas and embryonal carcinomas - pineoblastomas and pineocytomas - metastatic carcinoma ### Skull and Spine (including intervertebral discs) - 1. Describe the gross and histopathological features of the following disorders of the skull: - dermoids and epidermoids - hemangiomas - osteomas - chordomas - solitary and multifocal eosinophilic granuloma - Paget's disease including secondary osteosarcoma - metastatic carcinomas - plasmacytoma including myeloma - 2. Describe the gross and histopathological features of the following disorders of the spine and intervertebral discs: - herniated intervertebral discs - pyrophosphate disease including involvement of ligamentum flavum - tumoral calcinosis - hemangiomas - chordomas - eosinophilic granulomas - metastatic carcinomas including epidural metastases - plasmacytoma including myeloma - lymphomas - primary bone tumors - spinal osteomyelitis including tuberculous and fungal spinal osteomyelitis ## **Eye and Orbit** - 1. Describe the gross and histopathological features of the following ocular lesions: - retinoblastomas - ocular melanomas - 2. Describe the gross and histopathological features of the following orbital lesions: - optic nerve gliomas - optic nerve meningiomas - orbital lymphomas and pseudotumors - orbital metastases ### Miscellaneous - 1. List the gross and histopathological features found in temporal lobectomy and cerebral hemispherectomy specimens removed during epilepsy surgery. - 2. Review the gross, histopathological, and cytopathological features that can be observed in shunt revision specimens. - 3. Describe the gross, histopathological, and cytopathological features that can be observed with indwelling pump and intrathecal catheter specimens. - 4. Cite the techniques for examination of foreign objects removed from the nervous system and the need for documentation of chain of custody when of potential legal significance. - 5. Describe the histopathological features of myotonic dystrophy and central core myopathy and list the potential implications of these diseases with regard to adverse anesthetic reactions including development of malignant hyperthermia. #### **NEUROPHARMACOLOGY** #### **UNIT OBJECTIVES** Demonstrate knowledge of pharmacology that is pertinent to the treatment of neurological disorders and diseases which affect the nervous system. #### COMPETENCY-BASED KNOWLEDGE OBJECTIVES: - 1. Review basic cellular neurotransmission. In the course of this review discuss: - the synapse - membrane potentials - ion pumps - ion channels - transmitter secretion - transmitter identification - 2. Define and discuss receptors and receptor pharmacodynamics including: - receptor classification - receptor identification - dose response curves - agonists and antagonists - receptor modulation - 3. Discuss the neurotransmitter acetylcholine in detail. Include within the context of the discussion: - cholinergic receptor classification - functional aspects of cholinergic receptors - synthesis, storage, and release of acetylcholine - 4. Discuss the catecholamine neurotransmitters (norepinephrine and dopamine) in detail. Include within the context of the discussion: - biosynthesis of catecholamines - storage and release of
catecholamines - anatomy of catecholamine receptors - adrenergic receptors - dopaminergic receptors - 5. Discuss the neurotransmitter serotonin in detail. Include within the context of the discussion: - anatomy of serotonin receptors - biosynthesis, storage and release of serotonin - sub-types of serotonin receptors - 6. Discuss the neurotransmitter glutamate in detail. Include within the context of the discussion - biosynthesis, storage and release of glutamate - ionotropic glutamate receptors - ➤ NMDA receptors and subunits - non-NMDA receptors and subunits - metabotropic glutamate receptors - Froup I metabotropic receptors and subunits - Froup II metabotropic receptors and subunits - ➤ Group III metabotropic receptors and subunits - role in neurological disorders - 7. Discuss the neurotransmitters GABA and glycine in detail. - synthesis, uptake, and release - physiology and pharmacology - clinically relevent agonists and antagonists of GABA and glycine receptors - 8. Discuss the peptide neurotransmitters. - 9. Describe the pharmacology of each of the drugs used to treat neurological disorders. ### **NEUROLOGY** #### **UNIT OBJECTIVES** Demonstrate an understanding of the neurologic examination, diagnostic neurologic testing, neurologic diseases and their treatment. ## **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** - 1. Discuss electroencephalography. Recognize normal and abnormal EEG patterns. Identify specific epileptic conditions by EEG findings. - 2. Describe the principles of sensory evoked potential testing (SEPs). Discuss how SEPs may be useful diagnostically. - 3. List the indications for using intraoperative SEP monitoring and describe in detail how the procedure may be performed. - 4. Describe the principles of visual evoked potential testing (VEPs). Discuss how VEPs may be useful diagnostically. - 5. Describe the principles of motor evoked potential testing (MEPs). Discuss how MEPs may be useful diagnostically. - 6. List the indications for using intraoperative MEP monitoring and describe in detail how the procedure may be performed. - 7. Discuss electromyographic (EMG) testing in detail. Describe how the testing is performed and review the diagnostic capabilities of EMG testing. Describe the EMG changes associated with neuromuscular pathology. - 8. List the indications for using intraoperative EMG testing and describe in detail how the procedure may be performed. - 9. Discuss nerve conduction velocity (NCV) testing in detail. Describe how the testing is performed and review its diagnostic capabilities. List the transmission velocities of the major nerves. Describe NCV changes observed in neuropathy. - 10. Define delirium and dementia. List the differential diagnoses for each. - 11. Define and discuss coma and altered states of conciousness. - 12. Describe the evaluation of a patient with syncope. - 13. Describe the etiology and pathogenesis of cerebrovascular disease. - 14. Review the clinical presentation and discuss the radiographic evaluation, clinical evaluation, and management of the following: - transient ischemic attacks - cerebral infarction - cerebral and cerebellar hemorrhage - subarachnoid hemorrhage - venous infarction - 15. Identify the primary causes of stroke in the pediatric population. - 16. Comprehensively discuss the etiology, clinical presentation, diagnostic evaluation, and management of cerebral vasculitis. - 17. Differentiate between basal occlusive disease with and without telangiectasia. Review the prognosis and treatment options for each. - 18. Describe the acute and chronic effects of ionizing radiation on the central nervous system. - 19. Review the diagnosis and management of pseudotumor cerebri. - 20. Discuss the diagnosis and management of normal pressure hydrocephalus. - 21. Discuss the management of hyperosmolar hyperglycemic nonketotic diabetic coma. - 22. Review the neurological manifestations of altitude sickness. - 23. List the neurological manifestations of decompression sickness. - 24. Describe autism. - 25. Revivew the general topic of chromosomal abnormalities as they may relate to the central nervous system including etiology, inheritance patterns, penetrance, and laboratory diagnosis. - 26. List the major syndromes characterized by obesity and hypogonadism, including Prader-Willi syndrome. - 27. Discuss agenesis of the corpus callosum. - 28. Discuss an encephaly, microencephaly, and megalencephaly. - 29. List the major disorders of amino acid and purine metabolism. Discuss the neurological manifestations of each. - 30. Review each of the major storage diseases including: - GM₁-Gangliosidoses - GM₂-Gangliosidoses - Fabry disease - Gaucher disease - Niemann-Pick disease - Farber disease - Wolman disease - Refsum disease - Cerebrotendinous Xanthomatosis - Neuronal ceroid lipofuscinoses - 31. Review each of the major leukodystrophies including: - Krabbe leukodystrophy - metachromatic leukodystrophy - X-linked leukodystrophies with and without adrenal involvement. - 32. Review each of the major mucopolysaccharidoses including: - Hurler syndrome (MPS IH) - Hunter syndrome (MPS II) - Sanfilippo syndrome (MPS III) - Morquio syndrome (MPS IV) - Maroteaux-Lamy syndrome (MPS VI) - 33. Review the disorders of carbohydrate metabolism including: - glycogen storage diseases - Lafora disease and other polyglucosan storage diseases - 34. Discuss hyperammonemia as it relates to neurological dysfunction. - 35. Discuss adrenoleukodystrophy as it relates to neurological dysfunction including Reye's syndrome. - 36. Review the major syndromes of dysfunctional copper metabolism including: - hepatolenticular degeneration (Wilson disease) - trichopoliodystrophy (Menkes' syndrome) - 37. Review the pathogensis, clinical presentation, diagnosis, and treatment of acute intermittent porphyria. List drugs to avoid in patients with porphyria (i.e., sulfa drugs, etc.). - 38. Review the pathogensis, clinical presentation, diagnosis, and treatment of abetalipoproteinemia. - 39. orders associated with xeroderma pigmentosum. - 40. List the major cerebral degenerative disorders of childhood including: - progressive sclerosing poliodystrophy - spongy degeneration - infantile neuraxonal dystrophy - Hallervorden-Spatz disease - Pelizaeus-Merzbacher disease - Alexander disease - Cockayne syndrome - peroxisomal diseases - Leigh disease - 41. Review in detail the major neurocutaneous disorders including: - neurofibromatosis, Type 1 and Type 2 - encephalotrigeminal angiomatosis - incontinentia pigmenti - tuberous sclerosis - 42. Discuss Leber Herditary Optic Atrophy. - 43. Review the salient features of progressive external ophthalmoplegia. - 44. Define peripheral neuropathy, polyneuropathy, mononeuropathy, mononeuropathy multiplex, and neuritis. - 45. Review the major inherited neuropathies including: - peroneal muscle atrophy - Dejerine-Sottas disease - Refsum disease - hereditary sensory neuropathy - porphyric neuropathy - 46. Discuss the etiology, clinical presentation, diagnosis, treatment, and prognosis of Guillain-Barre syndrome. - 47. List the major acquired neuropathies other than Guillain-Barre syndrome including: - chronic demyelinating polyneuritis - acute and chronic idiopathic sensory neuropathy - acute pandysautonomia - tick paralysis - brachial neuropathy (neuralgic amyotrophy) - radiation neuropathy - cold neuropathy - cryoglobin neuropathy - diabetic neuropathy - hypothyroid neuropathy - acromegalic neuropathy - vasculitic neuropathy - uremic neuropathy - hepatic neuropathy - infectious neuropathies - leprosy - acquired immunodeficiency virus - Lyme - herpes zoster - sarcoid neuropathy - paraneoplastic neuropathy - amyloid neuropathy - polyneuropathy associated with plasma cell dyscrasia - polyneuropathy associated with dietary deficiencies - neuropathy induced by metals - arsenic - lead - mercury - thallium - drug-induced neuropathy - neuropathy produced by aliphatic chemicals - 48. Discuss the major hereditary ataxias including: - Friedreich ataxia - Levy-Roussy syndrome - hereditary cerebellar ataxia - 49. Review the major noninherited forms of cerebellar ataxia including: - acute cerebellar ataxia in children - ataxia telangiectasia - Marinesco-Sjögren syndrome - Ramsay-Hunt syndrome - Joseph disease - 50. Discuss the pathophysiology, clinical presentation, treatment, and prognosis of Alzheimer's disease, Pick disease, and diffuse Lewy body disease. - 51. Define hemichorea and hemiballismus. - 52. Review the pathophysiology, clinical presentation, treatment, and prognosis of Syndenham chorea, Huntington's disease, and senile chorea. - 53. Define myoclonus. - 54. Review Tourette's syndrome. - 55. Review the major general and focal dystonic conditions. - 56. Define benign essential tremor. - 57. Discuss the pahtophysiology, clinical presentation, diagnosis, treatments and prognosis of Parkinsonism in detail. - 58. Define progressive supranuclear palsy. - 59. Review the pathophysiology, clinical presentation, diagnosis, and treatment of tardive dyskinesia. - 60. Discuss hereditary spastic paraplegia. - 61. List the major generalized and focal forms of spinal muscular atrophy including: - Wernig-Hoffmann disease - Kugelberg-Welander syndrome - benign focal amyotrophy - 62. Describe the pathophysiology and neurological manifestations of poliomyelitis. - 63. Review the pathophysiology, clinical presentation, diagnosis, treatment, and prognosis of amyotrophic lateral sclerosis. - 64. Review the pathophysiology, clinical presentation, diagnosis, treatment, and prognosis of subacute combined degeneration of the spinal cord. - 65. Review the pathophysiology, clinical presentation, diagnosis, treatment, and prognosis of juvenile and adult myasthenia gravis. - 66. Review the pathophysiology, clinical presentation, diagnosis, treatment, and prognosis of botulism. - 67. Review the common muscular dystrophies including: - Duchenne muscular dystrophy - fascioscapulohumeral muscular dystrophy -
myotonic muscular dystrophy - myotonia congenita - congenital muscular dystrophy - 68. Review the major periodic paralysis syndromes including: - familial periodic paralysis - hypokalemic periodic paralysis - hyperkalemic periodic paralysis - paramyotonia congenita - 69. Discuss polymyositis. - 70. Review the epidemiology, pathophysiology, clinical presentation, diagnosis, treatment, and prognosis of multiple sclerosis. - 71. Define Marchiafava-Bignami disease. - 72. Review central pontine myelinolysis in detail. - 73. Discuss multiple system atrophy. - 74. Review the pathophysiology, clinical presentation, diagnosis, treatment, and prognosis of migraine headaches. - 75. Discuss the diagnosis and management of non-migrainous headache syndromes. - 76. Review the pathophysiology, clinical presentation, diagnosis, treatment, and prognosis of the common epileptic disorders in detail. - 77. Define status epilepticus and discuss the medical treatment of same. - 78. Describe the neurological implications of the common collagen-vascular diseases. - 79. Describe the neurological implications of alcoholism. - 80. Discuss the neurological aspects of pregnancy. - 81. Review malignant hyperthermia. #### NEURORADIOLOGY #### **UNIT OBJECTIVES** Demonstrate an understanding of neuroradiological imaging and interventions as they specifically relate to neurosurgical patients. ### COMPETENCY-BASED KNOWLEDGE OBJECTIVES: - 1. Describe the precautions which should be taken when performing radiologic examinations. - 2. Identify the normal anatomical structures of the skull on antero-posterior, lateral, Towne, and submental vertex radiographs. - 3. List the indications for carotid and cerebral angiography. - 4. Review the potential complications to intravenous contrast agents and discuss the management of same. - 5. Identify the major arteries and veins of the neck and brain on angiograms. - 6. Describe the concepts of computerized tomographic (CT) scanning. - 7. dentify the normal anatomical structures of the scalp, skull, dura, brain, and cranial vasculature on CT scans. - 8. Describe the concepts of magnetic resonance (MR) scanning. Review the various imaging sequences which may be obtained. - 9. Identify the normal anatomical structures of the scalp, skull, dura, brain, and cranial vasculature on MR scans. - 10. Recognize common traumatic injuries which may be detected by skull radiographs including: - linear skull fractures - depressed skull fractures - pneumocephalus - foreign bodies - 11. Recognize common pathologic conditions which may be detected by skull radiographs including: - neoplasms - fibrous dysplasia - congenital bone diseases - metabolic bone disorders - infections - 12. Recognize common traumatic injuries which may be detected by head CT including: - skull fractures - pneumocephalus - intracranial hematomas - epidural - acute subdural - chronic subdural - intraparenchymal - intraventricular - cerebral contusions - subarachnoid hemorrhage - foreign bodies - 13. Recognize common pathologic conditions which may be detected by head CT including: - ischemic infarction - venous infarction - hydrocephalus - cysts - tumors - cerebral edema - infections - congenital abnormalities - infections - 14. Recognize common traumatic injuries which may be detected by head MR scans including: - pneumocephalus - intracranial hematomas - epidural - acute subdural - chronic subdural - intraparenchymal - intraventricular - cerebral contusions - diffuse axonal injury - 15. Recognize common pathologic conditions which may be detected by head MR scans including: - ischemic infarction - venous infarction - hydrocephalus - cysts - tumors - cerebral edema - vascular occlusions - infections - congenital abnormalities - 16. Identify the normal anatomical structures of the craniovertebral junction on plain radiographs. - 17. Review the radiographic diagnoses of platybasia and cranial settling. - 18. Describe the plain radiographic findings of common traumatic injuries to the craniovertebral junction including: - occipital condyle fractures - atlanto-occipital dislocation - Jefferson fractures - posterior atlas fractures - dens fractures - axis body fractures - hangman's fracture - atlas and axis facet fractures - atlanto-axial rotatory dislocation - 19. Distinguish between orthotropic and dystropic os odontoideum. - 20. Describe the common congenital abnormalities of the craniovertebral junction. - 21. Recognize common spinal congenital abnormalities on plain radiographs. - 22. Recognize common spinal traumatic injuries which may be detected by plain radiographs including: - vertebral body fractures - facet fractures and dislocations - posterior element fractures - transverse process fractures - vertebral subluxation/dislocation - 23. Recognize common spinal degenerative conditions which may be detected by plain radiographs. - 24. Discuss the indications for CT and MR scanning of the spine in the setting of trauma. - 25. Describe the CT scan appearance of each of the traumatic spinal lesions previously listed. - 26. Describe the MR scan appearance of: - spinal ligament injury - traumatic disc herniation - spinal cord contusion - spinal epidural hematoma - 27. Recognize common spinal degenerative conditions which may be detected by MR including: - disc degeneration - disc herniation - degenerative spinal stenosis - facet hypertrophy - osteophyte formation - foraminal stenosis - degenerative spondylolisthesis - degenerative scoliosis - ossification of the posterior longitudinal ligament - 28. Identify spinal and spinal cord tumors on CT and MR scans. - 29. Discuss the indications for spinal myelography. - 30. Review the indications for spinal angiography. - 31. Discuss the use of both the radiographic contrast and radionuclide shuntogram in evaluating neurosurgical patients. # ชั้นปีที่ 4: - 1. Identify the common carotid and vertebral circulation congenital variants on angiograms. - 2. Recognize intracranial aneurysms on angiograms. - 3. Identify and characterize intracranial vascular malformations on angiograms. Recognize: - arteriovenous malformations - venous angiomas - arteriovenous fistula - feeding vessels - draining veins - associated aneurysms - degree of shunting - 4. Discuss the angiographic evaluation of carotid and vertebral disease. - 5. Review the role of MR angiography and venography in the evaluation of cerebrovascular disease, neoplasms, and trauma. - 6. Describe the radiological evaluation of CNS vasculitis. - 7. Describe the radiological evaluation of spinal vascular malformations. - 8. Discuss the role of myelography in the evaluation of neurosurgical patients. - 9. Discuss the radiological evaluation of suspected CNS and spinal infection. - 10. Review MR neurography. - 11. Describe the appearance of peripheral nerve tumors on MR scans. - 12. Revie the role of radionuclide scans in the evaluation of patients with suspected cranial and spinal disease. - 13. Discuss the use of intraperative radiographs and fluoroscopy. - 14. List the indications for CT- and MR-guided biopsies. - 15. Describe the concepts of ultrasonography. - 16. Review the findings of normal and abnormal neonatal cranial ultrasound. - 17. Review the findings of normal and abnormal carotid ultrasounds. - 18. Discuss the use of transcranial doppler ultrasonography in the management of patients with subarachnoid hemorrhage, trauma, and occlusive vascular disease. # ชั้นปีที่ ระ - 1. Review the indications for interventional endovascular therapies for: - aneurysms - vasospasm - cranial vascular malformations - spinal vascular malformations - tumor embolization - carotid and vertebral stenosis - carotid and vertebral dissection - 2. Describe the indications and techniques of endovascular trial occlusions. - 3. Review the role of quantitative cerebral blood flow studies in the management of neurosurgical patients. - 4. Describe the concepts of positron emission tomography. Review the indications for obtaining such scans. - 5. Describe the concepts of functional MR imaging. Review the indications for obtaining such scans. - 6. Describe the concepts of MR spectroscopy. Review the indications for obtaining such evaluations in neurosurgical patients. - 7. Discuss the indications and technique of discography. Describe the procedure. - 8. Discuss the indications for percutaneous vertebroplasty. Describe the procedure. ### **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** # ชั้นปีที่ 2-3: - 1. Order appropriate radiological evaluations in a timely fashion. - 2. Complete radiological requisitions properly. - 3. Demonstrate the ability to accurately interpret the radiographic studies of trauma patients. # ชั้นรีไที่ 4. - 1. Demonstrate the ability to accurately interpret carotid and vertebral angiograms. - 2. Demonstrate the ability to accurately interpret spinal angiograms. - 3. Demonstrate the ability to accurately interpret spinal myelograms and post-myelogram CT scans. - 4. Demonstrate the ability to accurately interpret cranial and spinal CT and MR scans of nontraumatic lesions. # ชั้นปีที่ ระ - 1. Demonstrate the ability to accurately interpret radiological examinations of neurosurgical patients. - 2. Demonstrate the ability to use intraoperative ultrasonography. ### **GENERAL CLINICAL TOPICS** ## FLUIDS, ELECTROLYTES, AND NUTRITION #### **UNIT OBJECTIVES** Demonstrate an understanding of normal and pathologic fluid and electrolyte homeostasis. Demonstrate an ability to maintain normal electrolyte balance. Demonstrate an understanding of the basics of nutritional management in neurosurgical patients. ### COMPETENCY-BASED KNOWLEDGE OBJECTIVES: - 1. Discuss the normal distribution of intracellular and extracellular fluid and electrolytes including: - sodium and water distribution and metabolism - clinical assessment of water and sodium balance and the concept of osmolality - normal maintenance requirements - management of pathologic conditions such as diabetes insipidus and
the syndrome of inappropriate antidiuretic hormone secretion - cerebral salt wasting - 2. Review the potential implications of diuresis and fluid restriction on water and electrolyte balance. - 3. Briefly review the potential clinical implications of calcium, phosphorous, and magnesium excesses and deficiencies and the treatment of same. - 4. Review the criteria for nutritional assessment including: - history of significant weight loss - hypoalbuminemia - impaired immune response including diminished total lymphocyte count and anergy - physical signs of malnutrition - 5. Briefly describe the metabolic responses to starvation and stress. - 6. Describe and contrast the indications, contraindications, complications, and benefits of enteral and parenteral nutrition. - 7. Analyze the implications of specific nutritional deficiencies as they relate to neurological and neurosurgical diseases. - 8. Briefly review swallowing disorders. - 9. Describe the common changes of metabolism and nutritional requirements of trauma patients and their evaluation. ## COMPETENCY-BASED KNOWLEDGE OBJECTIVES: - 1. Demonstrate an ability to manage the fluid and electrolyte requirements of neonatal, pediatric, and adult neurosurgical patients. - 2. Demonstrate the ability to place central venous catheters. - 3. Demonstrate the ability to place enteral feeding tubes. - 4. Demonstrate an ability to prescribe appropriate parenteral and enteral nutrition. - 5. Recognize and treat the complications of parenteral and enteral feeding including: - line sepsis - glucose intolerance - diarrhea - dehydration - 6. Recognize swallowing disorders and manage same. #### **GENERAL CRITICAL CARE** #### **UNIT OBJECTIVES** Demonstrate an ability to triage neurosurgical patients to and from a critical care setting. Demonstrate a knowledge of and the ability to manage neurosurgical patients in the critical care setting. #### COMPETENCY-BASED KNOWLEDGE OBJECTIVES: - 1. Define the adult and pediatric patient which would be best served in a critical care setting; include both medical and neurosurgical issues within the context of this discussion. - 2. Review general medical issues pertinent to the management of neurosurgical patients in a critical care setting including: - . prophylaxis of gastrointestinal hemorrhage - . prophylaxis of pulmonary morbidity - prophylaxis, diagnosis, and treatment of venous thrombosis and pulmonary embolism - skin care - eye care - physical therapy to maintain strength and joint range of motion - universal precautions - workup and treatment of sepsis - 3. Describe the indications and pharmacokinetics for medications commonly used in the management of critically ill neurosurgical patients including: - vasoactive drugs - ionotropic drugs - bronchodilators - diuretics - antiarrhythmics - antihypertensives - antimicrobials - anticonvulsants - 4. Describe the clinical presentation, evaluation, and treatment of infections which commonly occur in critical care neurosurgical patients. - 5. Review the indications for intubation including: - loss of patient airway - respiratory insufficiency - inability to protect airway - 6. Discuss commonly used pulmonary values including: - measured pulmonary functions - rate - minute ventilation - spontaneous tidal volume - forced vital capacity (FVC) - functional residual capacity (FRC) - maximum ventilatory volume (MVV) - ventilator modes and settings - pressure versus volume ventilation - continuous positive airway pressure (CPAP) - intermittent positive airway pressure (IPAP) - pressure support - assist control - intermittent mandatory ventilation (IMV) - positive end expiratory pressure (PEEP) - rate - tidal volume - 7. Review the indications for weaning patients from ventilatory support. Describe the methods by which this is accomplished and the general pulmonary parameters a patient must demonstrate prior to extubation. - 8. Discuss the medications used to improve pulmonary function. - 9. Briefly review the following cardiac function parameters: - preload - fterload - contractility - 10. Review the indications for implementing the following monitoring devices. Briefly describe how the information obtained is utilized to optimize patient management: - arterial catheters - central venous catheters - Swan-Ganz catheters - pulse oximetry - electrocardiographic monitoring - end-tidal CO₂ monitors - 11. List the signs of acute myocardial ischemia and briefly discuss the emergent treatment of this condition. - 12. Review the impact of renal insufficiency as it pertains to the management of neurosurgical patients. - 13. Briefly discuss the diagnosis and management of acute renal insufficiency. - 14. Describe the diagnosis and management of an ileus. List the differential diagnosis for an ileus. - 15. review the diagnosis and management principles of the following endocrine disorders: - hypo/hyperthyroidism - hypo/hyperparathyroidism - adrenal cortical excess and deficiency - diabetes mellitus - diabetes insipidus - 16. Review the medical and legal definitions of brain death. - 17. Discuss moral and ethical issues pertaining to critically ill neurosurgical patients including: - patient or family requests to withhold or withdraw treatment - organ donation. - 18. Summarize the physiology of hydrogen ion production and excretion. - 19. Briefly discuss acute and chronic buffering systems. - 20. Discuss metabolic acidosis and alkalosis. - 21. Discuss respiratory acidosis and alkalosis. - 22. Review the effects of acid-base disturbances on the central nervous system and intracranial pressure. ### **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** - 1. Obtain ACLS and ATLS certification. - 2. Demonstrate the ability to perform an initial evaluation and management of critically ill neurosurgical patients. - 3. Perform the following procedures: - orotracheal intubation - nasogastric intubation - bladder intubation - 4. Serve on a trauma team. - 5. Demonstrate an ability to manage neurosurgical patients in a critical care setting. - 6. Diagnose and treat acid-base abnormalities in neurosurgical patients. - 7. Demonstrate an understanding of the management of complex acid-base disturbances in the critical care setting. # ชั้นปีที่ 5: 1. Oversee and direct the junior and middle level resident management of critically ill neurosurgical patients. #### INFECTION #### **UNIT OBJECTIVES** Demonstrate an understanding of the factors related to the acquisition, diagnosis, and treatment of infections as they pertain to neurosurgical patients. Describe the typical presentation and treatment of common neurosurgical infections. Review the methods used to minimize infectious complications in neurosurgical patients. Demonstrate an understanding of the techniques to minimize the risk of spread of viral infections, including hepatitis and human immunodeficiency virus (HIV). ## **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** - 1. List the common organisms responsible for meningitis in an age related fashion. - 2. List the common CNS infections and describe the populations which are most at risk for each. - 3. List the common opportunistic CNS infections and describe the populations which are most at risk for each. - 4. Describe in detail the clinical and pathological symptoms and findings associated with CNS infections. - 5. Discuss the radiological evaluation of patients with suspected and known CNS infections. - 6. Review the indications for alerting individuals at risk for infections based on exposure to a patient with a known CNS infectious process. - 7. Review each major class of antimicrobial drugs: - describe the potential of resistance to each drug - list the potential complications of each agent - review the serological monitoring of each antimicrobial agent including the need for monitoring renal, hepatic, and hemopoietic function - indicate which drugs will traverse the blood-brain barrier and which will not - demonstrate a knowledge of the pharmacokinetics of each antimicrobial agent - describe the potential complications of each antimicrobial drug and explain how to monitor for and detect same - review the rationale for monitoring drug levels and list the therapeutic levels of antimicrobials commonly used to treat neurosurgical infections - 8. Discuss the advantages and disadvantages of treatment of CNS infections with corticosteroids. - 9. Review the role of anticonvulsant therapy in the management of CNS infections. - 10. List the universal precautions for prevention of infection as they pertain to health care workers in general and neurosurgeons in particular. - 11. Discuss the role of hand washing as the most important method of preventing infection. - 12. Describe the role of the clinical epidemiologist in tracking infectious disease incidence and potential sources of infection within the hospital and community setting. - 13. Review the mode of transmission, diagnosis, and treatment of non-CNS infections which may commonly arise in neurosurgical patients such as: - respiratory infections - urinary tract infections - wound infections - 14. Review the prevention, diagnosis and management of sepsis. - 15. List the common sources of a postoperative fever. - 16. Describe the workup for a febrile patient. - 17. Discuss the use of prophylactic antibiotics. - 18. Review the symptoms, clinical evaluation and management of patients with shunt infections. - 19. Discuss prion disease and precautions to be taken when it is suspected. ### **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** - 1. Demonstrate the ability to use universal precautions. - 2. Demonstrate the ability to use sterile technique. - 3. Appropriately diagnose and treat non-CNS infections in neurosurgical patients. - 4. Appropriately diagnose and treat CNS infections in neurosurgical patients. #### NEUROSURGICAL CLINICAL TOPICS #### CEREBROVASCULAR SURGERY #### **UNIT OBJECTIVES** Demonstrate an understanding of the anatomy, physiology, pathophysiology and presentation of
cerebrovascular diseases, including ischemic and hemorrhagic stroke, and other diseases and malformations of intracranial, extracranial, and spinal vasculature. Demonstrate the ability to formulate and implement a diagnostic and treatment plan for cerebrovascular diseases, including medical and surgical management. ### **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** - 1. Describe the anatomy of the extracranial and intracranial vessels, including the carotid, vertebral, and spinal arteries. - 2. Describe the location of key perforating arteries involving the anterior and posterior circulation, their target distribution, and the consequence of occlusion or injury. - 3. Review the anatomy of the venous circulation as it pertains to the central nervous system. - 4. Identify the classic syndromes of vessel occlusion of the following: - internal carotid artery - middle cerebral artery - anterior cerebral artery - recurrent artery of Heubner - anterior choroidal artery - vertebral artery - posterior inferior cerebellar artery (PICA) - lower and upper basilar trunk - 5. Identify the classic brain stem ischemic syndromes. - 6. Explain the concepts of cerebral blood flow, cerebral autoregulation (hemodynamic and metabolic), ischemic thresholds, intracranial pressure, and cerebral perfusion pressure. Describe the impact of intracranial hypertension with and without mass lesion on cerebral blood flow. - 7. Recognize the common causes of brain ischemic states including: - cardiac embolism - embolism from proximal vasculature - large vessel occlusion - intracranial conducting vessel occlusion - small vessel disease - 8. Associate computed tomography (CT) and magnetic resonance (MR) evidence of ischemic injury with likely anatomic substrate. - 9. Describe the epidemiology, physiology, and underlying pathophysiology of ischemic brain injury, including concepts of critical therapeutic window. - 10. Recognize the common causes of intracranial and intraspinal hemorrhage including: - aneurysmal disease - vascular malformations - hypertension - vasculopathies - degenerative diseases - hemorrhagic arterial infarction - venous infarction. - 11. Relate typical imaging characteristics of central nervous system hemorrhagic lesions to probable causes. - 12. Categorize common causes of intracranial hemorrhage, subarachnoid hemorrhage, and ischemic stroke. - 13. Explain the principles of fluid and electrolyte resuscitation and maintenance, respiratory physiology, cardiac physiology, and nutritional physiology, as applied to the neurological patient following ischemic or hemorrhagic stroke. Integrate this knowledge with the specific issues of the perioperative period. - 14. Recognize the need for laboratory evaluation for systemic illness. - 15. List the appropriate diagnostic neuro-imaging studies utilized to evaluate ischemic and hemorrhagic stroke. - 16. Recognize the typical clinical course of patients with ischemic and hemorrhagic stroke, including peak risk intervals for edema, vasospasm, re-bleeding, etc. - 17. Identify the periods of high vulnerability to systemic complications of cerebrovascular illness, including deep venous thrombosis, pulmonary embolism, bacterial pneumonia, aspiration, congestive heart failure, etc. - 18. Explain the principles of augmentation of cerebral blood flow during cerebral vasospasm. - 19. Discuss the principles and indications for medical, endovascular, and surgical interventions for ischemic and hemorrhagic stroke. - 20. Relate the principles of timing of medical, endovascular, and surgical intervention in these same disease states. - 21. Explain the principles, indications for, and complications of barbiturate coma. - 22. Recognize the principles and interpretation of normal and common abnormal findings on skull, chest, and abdominal x-rays in the Critical Care Unit. - 23. Describe the fundamentals of CT scanning, including the typical appearance of acute, subacute, and chronic blood, calcification, ventricular anatomy, and mass effect. - 24. Describe the typical CT appearance of hemorrhagic and ischemic stroke. Provide a detailed explanation for the typical delay between the onset of stroke and appearance of confirmatory CT findings. - 25. Explain the fundamentals of MR imaging. Distinguish between normal and abnormal findings within the realm of cerebrovascular disease. Recognize the classic MR appearance of: - arteriovenous malformations - venous angiomas - cavernous malformations - aneurysms - 26. List the indications for non-invasive vascular imaging, including ultrasound, magnetic resonance angiography (MRA), and CT angiography. Recite the limitations of non-invasive studies. - 27. Describe the practical application of commonly employed non-invasive studies, such as transcranial Doppler, in the setting of cerebral vasospasm. - 28. List the indications for catheter angiography. Interpret the findings of angiography in ischemic and hemorrhagic cerebrovascular conditions. Identify the key segments of the internal carotid artery including the upper cervical, petrous, cavernous, and supraclinoid components. - 29. Recite the principles of localizing focal intracranial and spinal vascular pathology by the use of traditional topographic measurements and the application of stereotactic guidance. - 30. Describe the surgical anatomy and the principles of exposure of the cervical carotid artery. - 31. Describe the principles of pterional craniotomy, including scalp and bony anatomy, as well as the anatomy of the sphenoid ridge. - 32. Explain the principles of cerebrovascular surgery detailed in the previous objectives to medical students and allied health personnel during conferences. # ชั้นปีที่ 4: - 1. Recognize controversies regarding the basic neuroscience knowledge concepts mastered during junior residency. - 2. Explain the principles of ischemic neuronal protection and salvage. - 3. Review the principles of guideline development and outcome assessment related to the basic knowledge objectives achieved during junior residency. - 4. Display an understanding of the principles of hypothesis development and testing, and statistical analysis as applied to clinical research trials, as well as the critique of scientific manuscripts. - 5. Recognize areas of controversy related to management protocols in cerebrovascular patients achieved during junior residency. ## ช้ับปีที่ ระ - 1. Demonstrate a sophisticated understanding of current literature related to basic neuroscience knowledge objectives acquired as a junior and middle resident. Define scientific hypotheses in relationship to controversies and evolving knowledge regarding these same objectives and demonstrate the ability to interpret and adapt new knowledge to evolving patient-care paradigms. - 2. Demonstrate a mature fundamental knowledge in clinical and teaching conferences, specialty conferences, and in publications and scientific presentations. - 3. Understand the guidelines, protocols, and literature controversies regarding the diagnostic imaging modalities available in cerebrovascular disease. ### **COMPETENCY-BASED PERFORMANCE OBJECTIVES:** - 1. Perform a comprehensive neurological history and clinical examination. - 2. Perform a comprehensive systemic evaluation. - 3. Adapt comprehensive evaluation to specific pertinent positives and negatives with regard to ischemic and hemorrhagic stroke. - 4. Demonstrate an understanding of urgency and the ability to prioritize during emergent aspects of hemorrhagic and ischemic disease states. - 5. Demonstrate the ability to manage cardiac and pulmonary complications following cerebrovascular illness and therapy, and review the need for specialty and subspecialty consultations. - 6. Apply the principles of perioperative care following common endovascular and surgical procedures directed at cerebrovascular disease. - 7. Demonstrate the ability to be vigilant in the clinical detection of subtle neurological change during the acute and subacute phases of illness. - 8. Demonstrate the ability to place an arterial catheter, central venous catheter, and pulmonary artery catheter. Perform placement of a ventricular catheter via a burr hole or twist-drill craniostomy. - 9. Perform lumbar puncture and cerebrospinal fluid (CSF) reservoir tapping. - 10. Define the proper placement of a craniotomy flap in the planned surgical evacuation of hematoma. This should be performed using both topographical as well as stereotactic-assisted navigation techniques. - 11. Assist in the opening, exposure, and closure of cervical carotid procedures. - 12. Assist during pterional craniotomy for vascular disease. - 13. Assist in the performance of intracranial hematoma evacuation. - 14. Demonstrate the ability to keep accurate and timely records. # ชั้นๆีไดี่ 4. - 1. Perform pterional craniotomy for vascular disease. - 2. Demonstrate the ability to make independent management decisions regarding ischemic and hemorrhagic stroke states. - 3. Supervise care delivered by PGY1 and junior resident physicians for cerebrovascular patients. - 4. Demonstrate efficient prioritization skills for clinical assessment of multiple simultaneous problems in the same or different patients. Display a clear sense of prioritization regarding timing and urgency of medical and surgical intervention for ischemic and hemorrhagic stroke states. Recognize the impact of systemic conditions on prioritization and timing issues. - 5. Correctly interpret and respond to changes in patient status related to systemic and neurological parameters. - 6. Implement patient-care protocols regarding perioperative management. - 7. Display independence in making decisions regarding the critical care of cerebrovascular patients. Recognize the need for reporting to senior resident and attending staff such decisions. - 8. Demonstrate the ability to obtain appropriate medical and surgical consultation. - 9. Display skills in prioritization of diagnostic interventions, including the
choice and sequence of studies in the setting of ischemic and hemorrhagic states. - 10. Interpret invasive and noninvasive diagnostic imaging studies in relationship to cerebrovascular disease. - 11. Formulate preliminary and surgical planning. - 12. Perform frameless navigation procedures. - 13. Perform routine and complicated twist drill or burr-hole procedures for the drainage of the ventricular system or intracranial hematomas. - 14. Perform exposure of the cervical carotid artery for endarterectomy or proximal arterial control. - 15. Observe and assist in the performance of plaque removal and arterial closure during carotid endarterectomy. - 16. Practice microsurgical techniques in the laboratory setting. - 17. Demonstrate a mature understanding of the planning and performance of pterional craniotomy for intracranial vascular pathology. Perform pterional craniotomy with initiation of microsurgical clinical skills. Observe the microsurgical dissection of the Sylvian fissure and basal cisterns for vascular pathology. - 18. Perform the surgical approach to vascular structures via a craniotomy other than pterional. - 19. Supervise and assist junior residents in burr-hole and twist-drill procedures for ventricular access or intracranial pressure monitoring. - 20. Realize an increasingly progressive teaching responsibility to medical students, interns, and junior residents in the various educational objectives of the cerebrovascular curriculum. - 21. Supervise the junior residents in the technical performance of cerebrovascular procedures, as well as critical-care catheter procedures commensurate with their level of expertise. - 22. Organize clinical and teaching rounds and conferences, as well as the presentation of cases. - 23. Prepare topic reviews in lecture and manuscript formats, including literature summaries and reference compilations. # ชั้นปีที่ 5: - 1. Review fundamental concepts of cerebrovascular disease during conferences and clinical rounds with the house staff and medical student. - 2. Demonstrate a mature clinical judgment related to the spectrum of problems encountered in hemorrhagic and ischemic stroke states. - 3. Formulate independent plans for patient assessment and management, including prioritization in cerebrovascular disease while maintaining a clear reporting relationship with faculty. - 4. Supervise house staff and medical student team in daily patient assessment and care. - 5. Identify the indications and controversies of endovascular catheter procedures, perioperative management, and follow-up. Implement and supervise patient care protocols related to these procedures. - 6. Display a mature and detailed understanding of indications, principles, and interpretation of the full spectrum of neurodiagnostic armamentarium. Formulate independent management plans based on sophisticated interpretation of diagnostic studies for concise presentation to faculty. - 7. Apply evolving technology and new methods to patient protocols and the education of house staff and medical students. - 8. Demonstrate a mature understanding of surgical strategies and approaches to common and unusual vascular disease. - 9. Apply the principles of intraoperative anesthetic management, proximal and distal control, temporary arterial occlusion, brain protective strategies, and intraoperative localization as applied to vascular disease. - 10. Complete the planning, positioning, and execution of pterional craniotomy for common vascular disease. - 11. Perform microsurgical dissection of the Sylvian fissure and exposure of the basal cisterns for vascular disease. - 12. Perform microsurgical exposure and clipping of intracranial aneurysm. - 13. Complete the planning, positioning, and execution of non-pterional craniotomy for intracranial vascular disease. - 14. Assist in the microsurgical management of highly complex cerebrovascular disease. - 15. Plan and execute the craniotomy for the evacuation of intracranial hematomas. - 16. Supervise other house staff in meeting their surgical objectives. - 17. Describe the exposure and treatment of intraspinal vascular lesions. Assist in such operations. - 18. Oversee all aspects of patient care, identification of appropriate cases for database analysis, morbidity, mortality, conferences, and discussions. Supervise medical students and house staff in every aspect of patient care. - 19. Report appropriate patient care issues to responsible faculty members in a timely fashion. - 20. Organize and administer teaching conferences. - 21. Display mature participation in specialty conferences. - 22. Assign responsibilities to junior residents and residents, with the aim of fulfilling their respective educational objectives. #### **NEUROSURGICAL ONCOLOGY** #### **UNIT OBJECTIVES** Demonstrate an understanding of the anatomy, physiology, pathophysiology, and presentation of tumor-related diseases of the cranium. Demonstrate the ability to formulate and implement a diagnostic and treatment plan for tumor-related diseases of the cranium that are amenable to surgical intervention. ## COMPETENCY-BASED KNOWLEDGE OBJECTIVES: - 1. Summarize the epidemiology, incidence, and risk factors for intracranial neoplasms. - 2. Summarize the tenets of tumor biology including genetic factors and biochemical processes associated with invasion. Describe the natural history of intracranial neoplasms. - 3. List a differential diagnosis of lesions requiring biopsy and describe their pathophysiology. - 4. List the various types of bone tumors involving the calvarium. #### 5. Describe and differentiate: - astrocytomas, including the accepted World Health Organization (WHO) grading scheme - gliomas other than astrocytomas - metastatic tumors, including location and common origins - infectious, granulomatous, and cystic lesions that may present in a tumor-like manner - 6. Define the cell or origin of meningioma, its common intracranial locations, and the expected presentation for each location. - 7. Define the embryological origin of arachnoid cysts and their natural history; list the etiologies of other cystic lesions of the brain, including tumoral and infectious. - 8. Describe the anatomic location, cell of origin, clinical presentation, age at presentation, and natural history of common intrinsic posterior fossa neoplasms, including cerebellar astrocytoma, medulloblastoma, and ependymoma. - 9. Describe the anatomy of the posterior fossa and the relation of the cranial nerves to the brain stem and skull. - 10. Illustrate the relationship of the facial, vestibular, and cochlear components of the acoustic nerve at the internal auditory meatus. - 11. Describe the various tumors that may arise in the cerebellopontine angle (CPA). - 12. Describe the management of a patient with a brain abscess, including the role of stereotactic drainage or open drainage. - 13. Explain the medical workup of a patient with a diagnosed brain abscess. - 14. Specify the follow-up and evaluation of the patient with a brain abscess following surgical treatment. - 15. Describe the embryological origin of craniopharyngioma. List the common locations of the tumor. - 16. Describe the common presentations of pituitary tumors, the cell of origin, and endocrinopathies associated with: null cell adenomas somatotrophic adenomas prolactinomas corticotrophic secreting adenomas thyrotrophic-secreting adenoma - 17. Define the medical management of the secreting pituitary tumors. Explain the role of surgery in each of the tumors above. - 18. Describe the etiology of fibrous dysplasia, its presentation and general management. List the indications for surgery for benign tumors of bone at the base of the skull, and potential adjuvant therapy. - 19. List the tumors that may be routinely approached through a transtemporal route. - 20. Describe the indications for use of lumbar spinal drainage in skull base surgery, and its implementation. List all complications associated with continuous lumbar spinal drainage. 21. Illustrate the general principles of stereotaxis and the underlying localization techniques used in the presently used frame-based and frameless systems. # ชั้นปีที่ 4: - 1. Describe appropriate postoperative management with drainage of brain abscess or cyst. - 2. Describe the appropriate surgical management and postoperative treatment of bony skull lesions. - 3. Describe the role of surgery in arachnoid cysts, infectious cysts, and tumor-related cystic lesions. Describe the adjuvant treatment of parasitic cysts. - 4. Explain the rationale and indications for various skull base approaches to the anterior, middle and posterior cranial fossae. Identify the important anatomical landmarks for each approach. Illustrate the general principles used in prophylaxis of CSF leaks employed in skull base surgery. - 5. Describe the neurosurgical management for the following tumors involving the anterior cranial fossa: meningioma fibrous dysplasia esthesioneuroblastoma osteoma of the frontal sinus chondroma, chordoma mucocele bony metastasis - 6. Explain the use of the balloon occlusion test of the carotid artery, its indication for use in skull base tumor surgery, how it is performed, and how the information gained influences surgical management. - 7. Explain the surgical advantage of transposing the facial nerve during a transtemporal skull base approach. - 8. Describe the transcondylar approach, the relationship of the lower cranial nerves, and the exposure gained over a routine suboccipital craniectomy. - 9. Ilustrate the transpetrosal approach and the relationship of the transverse and sigmoid sinuses with skull bony landmarks such as the asterion, mastoid and inion. - 10. Describe the intradural course of the trochlear nerve, trigeminal nerve through Meckel's cave and the abducens nerve and Dorello's canal. - 11. Describe the surgical management of the frontal sinus which has been exposed during craniotomy for anterior skull base surgery. Illustrate the
development and use of a frontal vascularized perioranial flap and explain its indication. Similarly, illustrate the use of a myocutaneous flap of the temporalis muscle and list the locations for application. - 12. Describe the general methods employed for embolization of tumors of the head and neck, and the indications for such procedures. - 13. Compare and contrast the methods for stereotactic radiation, including particle beam, gamma ray or linear accelerator, and the indications for each technique. # ชั้นปีที่ 5: - 1. Describe the indications for transcranial orbitotomy and list the lesions which require this approach. - 2. Discuss the surgical management and postoperative treatment of astrocytomas, gliomas other than astrocytomas, metastatic brain tumors, infectious granulomas, and cystic lesions presenting in a tumor-like manner. Review the role of radiotherapy, chemotherapy, and other adjunctive treatments of these neoplasms. - 3. Describe the role of surgery for intracranial meningioma, and the relation between the surgical option and location of tumor. Discuss adjuvant treatments of meningioma and their efficacy. - 4. Discuss the surgical treatment of common intrinsic posterior fossa neoplasms, including cerebellar astrocytoma, medulloblastoma, and ependymoma including the role of ventricular drainage, and surveillance imaging. Present adjuvant treatment options and outcomes for the various posterior fossa intrinsic tumors. - 5. Address the surgical goals of treatment, complications of surgical treatment, and adjuvant therapy for posterior fossa meningioma. - 6. List and illustrate the various approaches for removal of a vestibular schwannoma, and the rationale and indication for each approach. - 7. Describe the role of stereotactic radiosurgery and microsurgery in the management of vestibular schwannoma. - 8. List the various approaches to the midline clivus and review the indications for each approach. Outline the surgical and medical management of tumors of the clivus and midline skull base. - 9. Explain the management goal for a patient with craniopharyngioma, and the risks of surgical treatment and conservative treatment. Describe the various surgical approaches used to resect craniopharyngiomas and the options for adjuvant treatment, including radiotherapy and chemotherapy (systemic and local). - 10. Illustrate the transnasal-transphenoidal approach and its indications. Define the options for treatment of recurrent pituitary tumors of all types (including medical management). Describe the risks of the approach and the management of the complication of CSF leak. - 11. Illustrate the various skull base approaches to the anterior, middle and posterior cranial fossae in detail, explaining the key anatomical landmarks and strict indications for the approach. List the complications relevant to each approach and the management of each complication. - 12. List a differential diagnosis of orbital tumors, their usual location within the orbit, medical and surgical management of the tumor and the approach used to remove the tumor if indicated. - 13. List the various tumors and their location in which an orbitocranial approach may be indicated for their removal. - 14. Compare and contrast the exposure offered by the pre-and postauricular infratemporal approach, and the indications for each approach. - 15. Illustrate transposition of the facial nerve during a transtemporal skull base approach. - 16. Describe the location of meningiomas intracranially which are amenable to preoperative embolization. ## **COMPETENCY-BASED PERFORMANCE OBJECTIVES:** # ชั้นปีที่ 2-3: - 1. Perform a complete history and physical examination on patients with intracranial neoplasms. - 2. Review appropriate radiographic studies with a radiologist and formulate a differential diagnosis for patients with intracranial neoplasms. - 3. Prepare patients for cranial tumor surgery. - 4. Understand the positioning of patients for craniotomy and craniectomy. - 5. Assist in the opening and closing of craniotomies and craniectomies for neoplasms. - 6. Place lumbar drains. - 7. Demonstrate the ability to open and close scalp incisions. - 8. Perform ventriculostomies. - 9. Demonstrate proper postoperative wound care. # ชั้นปีที่ 4: - 1. Independently determine a differential diagnosis based on the patient's history, physical examination, and radiographic studies. - 2. Position patients for craniotomy and craniectomy. - 3. Perform the opening and closing of craniotomies and craniectomies. - 4. Assist in the resection of intracranial neoplasms. - 5. Resect skull lesions. - 6. Operatively treat supra- and infratentorial brain abscess. - 7. Demonstrate the ability to manage postoperative complications including but not limited to: - brain edema - meningitis - cranial flap infection - postoperative seizures - 8. Assess the need for appropriate pre-, intra-, and postoperative monitoring. - 9. Obtain proper nonneurosurgical consultation in tumor patients. - 10. Identify patients requiring rehabilitation services. - 11. Utilize appropriate support agencies and groups for patients with intracranial neoplasms. # ชั้นาีไที่ ระ - 1. Demonstrate the capability to function independently in all phases of management of patients with intracranial neoplasms. - 2. Perform resection of supra- and infratentorial intra-axial and extra-axial neoplasms. - 3. Perform resection of pituitary lesions. - 4. Perform or serve as first assistant for skull base procedures. - 5. Oversee the pre- and postoperative management of patients with intracranial neoplasms. - 6. Assume teaching responsibilities for junior residents as assigned. - 7. Assume responsibility for managing the pyschosocial aspects of intracranial neoplasms. ### NEUROTRAUMA AND NEUROSURGICAL CRITICAL CARE #### **UNIT OBJECTIVES** Demonstrate an understanding of the anatomy, physiology, pathophysiology, and presentation of traumatic injuries of the brain, spinal cord, and peripheral nervous system, including their supporting structures. Demonstrate the ability to formulate and implement appropriate diagnostic and treatment plans for traumatic injuries to the nervous system, including both surgical and nonsurgical management. ### **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** ## ชั้นปีที่ 2-3: - 1. Describe the systematic assessment of polytrauma patients. - 2. Rank management priorities in polytrauma patients appropriately. - 3. Discuss principles of resuscitation of polytrauma patients including appropriate fluid resuscitation, and explain the anticipated effects of shock and resuscitation on fluid shifts and on electrolyte balance. - 4. Name an initial choice for intravenous fluids for a newly admitted Intensive Care Unit (ICU) patients with the following diagnoses and explain changes in that choice based upon specific changes in the patient's diagnosis, clinical condition, electrolyte and volume status: - head injury - stroke - tumor - infection - hydrocephalic - 5. Propose appropriate initial ventilator settings for patients with different types of common neurosurgical conditions and explain changes in that choice based upon specific changes in the patient's metabolic or pulmonary status. - 6. List the mechanisms of action and potential complications of commonly used pressors and hypotensive agents. - 7. Discuss indications, pharmacologic mechanism, duration of action, and effect on the neurologic examination for sedative, paralytic, and analgesic agents commonly used in the ICU. - 8. Explain the indications, advantages, and risks for various hemodynamic monitoring tools (e.g., pulmonary artery catheters, indwelling arterial lines) used in critically ill patients. - 9. Discuss the pathophysiology and management of coagulopathy after head injury. - 10. Describe basic principles of nutritional management in neurosurgical critical care. - 11. Explain the treatment of posttraumatic seizures. - 12. Outline basic principles of ICU management of patients with spinal cord injury. - 13. Name the major structures supplied by the major vessels of the brain and spinal cord. - 14. Discuss the evaluation, treatment, and prognosis of subarachnoid hemorrhage, both traumatic and spontaneous. - 15. Explain the pathophysiology and treatment of cerebral vasospasm. - 16. Formulate a diagnostic and treatment plan for patients with cerebral ischemia. - 17. Explain the evaluation and management of birth-related intracranial hemorrhage, spinal cord injury, and brachial plexus injury. - 18. Describe a systematic approach to the examination of the peripheral nervous system. - 19. Describe the basic principles of management of peripheral nerve injuries. - 20. List principles of rehabilitation of different types of neurosurgical patients. - 21. Define brain death and discuss methods of making such a diagnosis. - 22. Describe the pathophysiology of electrical injuries to the nervous system and review treatment of same. # ชั้นปีที่ 4: 1. Describe the pathophysiology of intracranial hypertension and explain a plan for its management, including arguments for and against various treatments. # ชั้นปีที่ 5: 1. Discuss management priorities in polytrauma patients with severe neurological and systemic trauma. #### **COMPETENCY-BASED PERFORMANCE OBJECTIVES:** # ชั้นปีที่ 2-3: - 1. Perform and document pertinent history, physical findings, and radiologic findings in a polytrauma patient. - 2. Differentiate central from peripheral nervous system injuries. - 3. Insert intravascular monitoring devices for use in the hemodynamic management of critically ill patients, including central venous lines, pulmonary artery catheters, and arterial catheters. - 4. Insert intracranial pressure monitoring devices, including ventriculostomy catheters and electronic (fiberoptic or miniaturized strain gauge) devices. - 5. Perform twist-drill or burr-hole drainage of subdural fluid collections. - 6. Decide appropriately which patients require emergency craniotomy and
other procedures. - 7. Position patients appropriately for procedures/surgery and begin emergency procedures if more experienced neurosurgeons have not yet arrived. - 8. Assist with opening and closure of craniotomies. - 9. Perform elective tracheotomies and be able to perform emergency tracheotomies. - 10. Be able to intubate patients in both emergency and elective situations. # ชั้นปีที่ 4: - 1. Perform the following surgical procedures in uncomplicated cases: - craniotomy for subdural and/or epidural hematoma - craniotomy for penetrating head injury - craniotomy for intracerebral hematoma or contusion - craniotomy for depressed skull fracture - decompressive craniectomy - repair/cranialization of frontal sinus fracture - craniotomy/craniectomy for posterior fossa epidural, subdural, or intracerebral hematoma - simple cranioplasty - 2. Manage traumatic skull base fractures with CSF leak. - 3. Manage infections associated with open CNS injuries. - 1. Perform the above procedures (listed under #1 for "A Middle Level" in complicated cases. - 2. Reconstruct complex cranial defects, with assistance from other specialties as indicated. - 3. Reconstruct traumatic skull base defects, with assistance from other specialties as indicated. - 4. Explore and repair peripheral nerve injuries. - 5. Supervise and teach junior and middle level residents with cases appropriate for their level. - 6. Lead the critical care team in the treatment of patients with neurological injuries, either in isolation or in polytrauma patients. #### PAIN MANAGEMENT #### **UNIT OBJECTIVES** Illustrate an understanding of the anatomical and physiological substrates of pain and pain disorders. Demonstrate an ability to formulate and execute diagnostic and therapeutic plans for management of pain and disorders giving rise to pain. ### **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** ## ชั้นปีที่ 2-3: - 1. Describe the anatomy and physiology of nociception within the peripheral and central nervous system. - 2. Differentiate the basic categories of pain syndromes: - acute - chronic - nociceptive - neuropathic (including complex regional pain syndromes) - myofascial - cancer-related - postoperative - 3. Explain the concept of pain as a biopsychosocial disorder. - 4. Discuss the role of rehabilitation in pain management. - 5. Describe methods for assessing pain in pediatric patients. - 6. Discuss ethical standards in pain management and research. - 7. Discuss methods of assessing outcomes of pain treatment and describe common assessment tools. - 8. Describe a typical history of a patient with trigeminal neuralgia, trigeminal neuropathic pain, and atypical facial pain. - 9. Diagram the anatomy of the following: trigeminal nerve divisions (ophthalmic, maxillary and mandibular nerves), foramen ovale, Meckel's cave, trigeminal (gasserian) ganglion, cistern of Meckel's cave, retrogasserian root, descending tract and nuclei, nervus intermedius, glossopharyngeal nerve. - 10. Illustrate the appropriate medical management of patients with trigeminal neuralgia, trigeminal neuropathic pain, and atypical facial pain. - 11. Discuss the potential complications of percutaneous procedures for trigeminal neuralgia. - 12. Describe the brain stem anatomy and physiology of the spinothalamic and trigeminothalamic systems. - 13. Describe the anatomy of the primary sensory cortex (S1), Rolandic fissure, and the relationship of S1 to the primary motor cortex. - 14. Describe the functional anatomy of the following thalamic nuclei: ventral posterolateral (VPL), ventralis caudalis externus (Vce), ventral posteromedial (VPM), and ventralis caudalis internus (Vci). Review the functional anatomy of the medial thalamic nuclei (e.g., n. parafascicularis). - 15. Identify the primary indications for spinal cord stimulation, peripheral nerve stimulation, and intraspinal (epidural, intrathecal) drug infusion therapy. - 16. Diagram the spine anatomy pertinent to SCS and intraspinal drug administration, including the spinous process/interspinal ligament/spinous process complex, ligamentum flavum and dorsal epidural space. Review the different degrees of angulation of the spinous processes at various spine levels in the cervical and thoracic area. - 17. Diagram the spinal cord anatomy pertinent to spinal ablative procedures for pain management. - 18. Recognize complications arising from implantation of pulse generators/receivers and infusion pumps. - 19. Describe the anatomy of the major peripheral nerves, brachial plexus, and lumbosacral plexus. - 20. Describe the anatomy of the sympathetic nervous system and explain its role in pain. - 21. List the common mechanisms of peripheral nerve injury and describe the changes which occur in an injured nerve at both the microscopic and macroscopic level. Explain the theories of pain generation in peripheral nerve injury. - 22. Describe the pharmacology of local anesthetic agents (e.g., lidocaine, procaine, tetracaine, bupivacaine) and the use of epinephrine with local anesthetic agents. - 23. Discuss the indications for peripheral neural blockade. Explain the principles of blocking procedures including the techniques and expected outcomes. Cite the complications of peripheral neural blockade (including anaphylaxis, neural injury, intravascular or intrathecal administration). List the alternatives to temporary blockade including neurolytic blocks, ablative neurosurgical procedures, augmentative neurosurgical procedures, alternative traditional pain management procedures, and alternative medicine approaches. - 24. Review the indications for radiofrequency facet rhizolysis. 25. Discuss the anatomy and biomechanics of the facet complex with emphasis on bone, cartilage, fibrous capsule, synovial fluid, and innervation of this structure. - 1. Name and differentiate the major classes of medications that are used commonly for pain treatment (opioids, non-steroidals and acetaminophen, antidepressants, anticonvulsants). - 2. Review the psychosocial issues that may influence a pain disorder and describe the role of behavioral interventions in pain management. - 3. Explain the rationale for multidisciplinary management of pain disorders. - 4. Contrast impairment and disability. - 5. Explain the basis of chemical, balloon compression, and radiofrequency neurolysis in the treatment of trigeminal neuralgia. - 6. Relate subcortical and brain stem sites that appear to be involved in the modulation of nociception to targets for deep brain stimulation (DBS) for pain control. - 7. Explain how central neurostimulation (cortical, subcortical) is thought to produce analgesia. - 8. Explain the role of ablative brain and brain stem procedures, (e.g., cingulotomy, mesencephalic tractotomy, trigeminal tractotomy) in the management of chronic benign pain and cancer pain. - 9. Discuss the possible complications of subcortical and brain stem ablative procedures for deafferentation pain. - 10. List the primary indications for the following spinal ablative lesions: dorsal root entry zone lesion, open and percutaneous anterolateral cordotomy, myelotomy. - 11. Discuss spinal cord stimulation (SCS), including types of stimulation systems and electrodes available, basic techniques of insertion of percutaneous and plate electrodes, the rationale and goals of intraoperative SCS testing (paresthesia coverage of painful area, avoidance of undesirable stimulation), the rationale and techniques for trialing SCS, and advantages and disadvantages of different sites of implantation of SCS pulse generator/receiver. - 12. Explain the key aspects of intraspinal drug administration, including the pharmacology of intraspinal drugs, the various types of infusion systems available, the rationale for trialing intraspinal drug infusions, basic techniques for insertion of intrathecal and epidural catheters, and the proper location for infusion pump implantation. - 13. Discuss the role of neuroectomy and neurolysis for pain control in nerve injury and compare alternative techniques for pain control. - 14. Describe the anatomy of the dorsal root ganglion, the bony anatomy of the nerve root foramen and the location of the ganglion within that foramen. Discuss indications for ganglionectomy and describe long-term outcome from ganglionectomy with emphasis on pain recurrence and deafferentation. - 15. Describe the indications for peripheral nerve stimulation and contrast to spinal cord stimulation. - 16. Describe indications for ablative peripheral neurolysis. Review the pharmacology and histopathologic effects of neurolytic agents (e.g., phenol, glycerine/glycerol, chlorcreosol, absolute alcohol, ammonium chloride/sulfate). - 17. Discuss basic principles of ablative neurolytic procedures in terms of technique, expected outcomes, and complications including neural injury, injury to surrounding soft tissue, inadvertent intravascular or intrathecal administration. Describe the alternatives to neurolysis, including temporary anesthetic blocks, ablative neurosurgical procedures, augmentative procedures, alternative traditional pain management procedures, and alternative medicine approaches. - 18. Describe the principles of radiofrequency lesioning. Include in the discussion the following topics: - probe - thermocouple and thermistor - time - intensity of heat - isotherm fields - 19. Discuss basic principles of radiofrequency facet rhizolysis and list the equipment utilized, technique employed, expected outcomes, and complications (including damage to other nerve root branches, potential for spinal instability, inadvertent damage to radicular artery, CSF leak, and spinal cord injury). - 20. Compare the alternatives to radiofrequency lesioning: - local anesthetic facet blocks - epidural injections - neurolytic facet blocks - ablative neurosurgical procedures - augmentative neurosurgical procedures - alternative traditional pain management procedures - alternative medicine approaches - surgical intervention such as
instrumentation and fusion - 1. Distinguish the indications for surgical and non-surgical treatment of pain. - Construct a management strategy relating to application of percutaneous trigeminal neurolytic procedures, retrogasserian rhizotomy, and microvascular decompression in the care of patients with trigeminal neuralgia. - 3. Describe and contrast the approaches to the cerebellopontine angle for microvascular decompression or rhizotomy of the trigeminal and glossopharyngeal nerves. - 4. Identify the various target spine levels for spinal cord stimulation according to the pain topography (simple and complex). - 5. Identify the various intraspinal structures based on their responses to mechanical and electrical stimulation (dura mater, lateral canal wall, dorsal columns, dorsal roots, ventral roots, motor neurons). - 6. Compare the different methods of intraspinal drug administration (epidural, intrathecal, tunneled catheter, implanted infusion system). - 7. Describe the techniques for trialing intraspinal drugs. - 8. Compare the pharmacodynamics of different drugs delivered intrathecally (e.g., hydrophilic vs. lipophilic). - 9. Describe the possible complications of spinal cord stimulation electrode or spinal catheter insertion and their evaluation and treatment: - paralysis - nerve root damage - electrode or catheter migration - electrode or catheter breakage - epidural hematoma - cerebrospinal fluid leak - 10. Describe the common drug side effects associated with intraspinal analgesic administration. - 11. Describe the correct placement of lesions for DREZ, cordotomy, and myelotomy, including lesion depth and structures affected. - 12. Discuss the possible neurological sequellae of spinal ablative procedures with both correct and incorrect lesion placement, with anatomical correlates. - 13. Describe the role of DREZ lesioning in the overall management of the patient with deafferentation pain. - 14. Describe the techniques for exposure of the major peripheral nerves. - 15. Demonstrate knowledge of basic principles of nerve grafting, including regeneration, graft length considerations, and use of allograft donor nerves. - 16. Explain the effects of blocking agents at the membrane and synaptic cleft, and the biochemistry and histology of neurotoxicity. - 17. Explain the histologic effects of neurolytic agents at the membrane level and display a comprehensive level of understanding with regard to toxicity. - 18. Describe the histologic effects of radiofrequency lesioning. - 19. Discuss in detail the evaluation and management of a patient selected for radiofrequency lesioning of the facets. - 20. Discuss the alternatives to radiofrequency lesioning, with particular emphasis on the potential surgical remedies including decompression, instrumentation, and fusion. ## COMPETENCY-BASED PERFORMANCE OBJECTIVES: ## ชั้นปีที่ 2-3: - 1. Obtain a pertinent history and perform an appropriate physical examination for a patient with a primary complaint of pain. - 2. Formulate and implement treatment plans for simple pain syndromes (e.g., acute postoperative pain, acute low back pain). - 3. Evaluate and diagnose a patient with trigeminal neuralgia, trigeminal neuropathic pain, and atypical facial pain. - 4. Assist with surgical exploration of the trigeminal nerve, nervus intermedius, or glossopharyngeal nerve for MVD or rhizotomy. - 5. Illustrate appropriate patient selection for spinal ablative or augmentative procedures for pain management. - 6. Evaluate electrodiagnostic studies pertaining to peripheral nerve injury. - 7. Recognize and treat the potential complications of peripheral nerve repair, neurectomy, and neurolysis including hematoma formation, infection, and local wound problems. - 8. Assist in surgical treatment of peripheral nerves. - 9. Assess patients for appropriateness of local anesthetic block(s). - 10. Perform simple superficial blocks with supervision and assist in complicated procedures. Following such procedures: - assess outcome of nerve block - recognize and treat complications - record and monitor effects of block over a specified time interval - assess need for repeat blocks - 11. Assess patient for appropriateness of ablative neurolysis. Perform simple superficial neurolysis with supervision and assist in complicated procedures. Following ablative neurolysis: - assess outcome of procedure - recognize and treat complications - record and monitor effects of neurolysis over a specified time interval - assess need for repeat procedures # ชั้นาีไที่ 4: - 1. Formulate and implement an appropriate treatment program for complicated pain syndromes (e.g., chronic back pain, "failed back surgery syndrome"). - 2. Assess the need for multidisciplinary management of pain disorders. - 3. Demonstrate appropriate management of psychosocial factors complicating a pain disorder. - 4. Assess patient for appropriateness of radiofrequency facet blocks. Perform radiofrequency facet blocks with supervision. Following the performance of such procedures: - assess outcome of facet blocks - recognize and treat complications - record and monitor effects of facet blocks over a specified time interval - assess need for repeat facet blocks - 5. Diagnose and formulate appropriate treatment plans for sympathetically-maintained pain. - 6. Diagnose and formulate an appropriate treatment plan for a patient with occipital neuralgia. - 1. Recognize and execute intelligent treatment choices for different pain syndromes including nociceptive, neuropathic, and cancer pain. - 2. Demonstrate appropriate use of each of the major classes of medications in common use for treating pain. - 3. Demonstrate appropriate selection of patients for surgical treatment of pain disorders. - 4. Perform microvascular decompression and rhizotomy of the trigeminal nerve and glossopharyngeal nerves. - 5. Formulate and implement an appropriate treatment plan for management of pain using spinal ablative and augmentative techniques according to pain etiology, pain topography, and status of spinal column (e.g. previous surgery at implant level, scoliosis, stenosis, etc.). - 6. Demonstrate proficiency in identification and lesioning of the dorsal root entry zone, even in cases of nerve root avulsion. - 7. Expose major peripheral nerves and perform closure of extremity incision for peripheral neurectomy/neurolysis. - 8. Demonstrate proficiency in neurolysis and nerve grafting techniques. - 9. Plan and execute surgical approaches to injuries of the major peripheral nerves. - 10. Plan a peripheral nerve reconstruction including exposure, preparation of donor site, and nerve graft. - 11. Incorporate ganglionectomy as one part of an integrated approach to the patient with intractable pain. - 12. Display appropriate patient selection for local anesthetic blocks. - 13. Perform simple superficial blocks with minimal supervision. Relative to these blocks perform the following: - assess outcome of block - recognize and treat complications - maintain detailed records of effects of block and follow-up - assess need for repeat blocks - 14. Provide information regarding alternatives for failed nerve block. - 15. Perform complicated nerve block procedures with direct supervision. Recognize and treat the complications of these procedures. #### PEDIATRIC NEUROSURGERY #### **UNIT OBJECTIVES** Demonstrate an understanding of the anatomy, physiology, pathophysiology, and presentation of diseases in children which a neurosurgeon may be called upon to diagnose and treat. Demonstrate the ability to formulate and implement a diagnostic and treatment plan for these diseases. ## COMPETENCY-BASED KNOWLEDGE OBJECTIVES: # ชั้นปีที่ 2-3: Myelomeningocele and its Variants, Meningocele, Encephalocele, Chiari Malformations, Occult Spinal Dysraphism, Split Cord Anomalies, Segmentation Anomalies, Craniofacial Syndromes and Phakomatosis - 1. Review the embryology of the central nervous system (CNS) and its supporting structures. - 2. List the abnormalities a neurosurgeon may treat which are congenital/developmental in nature and classify them with respect to their embryology defect. - 3. Describe the incidence, epidemiology and inheritance patterns. - 4. State other disorders associated with this set of diseases. - 5. Describe the anatomic and pathophysiologic parameters which distinguish amongst these diseases. - 6. Develop a diagnostic treatment plan along with prognostication of outcome with optimal management. - 7. List disorders which may be referred for neurosurgical care but do not require surgery. - 8. Display current knowledge of the molecular basis for these diseases where known. - 9. Describe the expected outcome if treatment is not undertaken. ### Hydrocephalus and Other Disorders of CSF Circulation - 1. Describe the normal physiology of CSF. - 2. Delineate the different etiologies of hydrocephalus and their relative incidence. - 3. Explain how to differentiate between CSF collections which require treatment and those which do not. - 4. Indicate the various treatment options for the management of hydrocephalus. - 5. Distinguish between treatment options for hydrocephalus with normal CSF and contaminated (e.g. infection, blood) CSF. - 6. List the complications associated with each treatment option for hydrocephalus and the diagnosis and treatment of same. - 7. Differentiate between low-pressure and high-pressure hydrocephalus. - 8. Describe the presentation and diagnostic approach to a patient with suspected shunt malfunction. - 9. Define how the diagnosis of hydrocephalus is made. - 10. List nonsurgical diseases which may be mistaken for hydrocephalus but require treatment different than surgery. - 11. Review the causes of cerebral atrophy. #### Neoplasia - 1. Delineate the differences between pediatric and adult tumors. - 2. List the common tumor types occurring in children and their typical location. - 3. Describe the changing tumor type and location based upon age. - 4. Identify
lesions which require biopsy as part of the treatment/diagnostic plan. - 5. Describe the typical presentations of tumors. - 6. Describe appropriate evaluation for patients suspected of having a tumor. - 7. Classify tumor types as to degree of malignancy, role of surgical vs. nonsurgical therapy, and outcomes of optimal treatment. - 8. Discuss the possible complications associated with specific tumor types. - 9. Describe the pertinent anatomy for surgical treatment of midline or hemispheric cerebellar tumors and hemispheric cerebral tumors. - 10. Discuss appropriate preoperative management of patients with tumors. - 11. Compare the role of biopsy, subtotal resection and total resection in the management of tumors. - 12. List possible complications of the treatment options, their diagnostic evaluation and treatment. #### Infection - 1. Describe the presentations of a shunt infection. - 2. List the indications for ventricular lumbar and subarachnoid CSF sampling. - 3. List the common organisms seen in shunt infections. - 4. Describe treatment plans for shunt infection. - 5. List risk factors and risks of shunt infection and the proper diagnostic protocol to establish the presence of a shunt infection. - 6. Describe common presentations of intracranial and intraspinal suppuration. - 7. List host risk factors which are associated with CNS infections. - 8. Describe appropriate diagnostic protocol to establish the presence of CNS infection. - 9. Discuss the timeliness and utility of surgical therapy for the treatment of CNS infection both shunt-related and non-shunt-related. #### Other - 1. Delineate the various types of spasticity and movement disorders seen in children. - 2. List seizure types. - 3. Describe surgical lesions which may be related to seizures. - 4. Describe surgical and non-surgical treatment options regarding the alleviation of spasticity in children. - 5. Discuss the pathophysiology of craniosynostosis. ### Cerebrovascular - 1. Delineate the possible causes of an atraumatic intracerebral or subarachnoid hemorrhage. - 2. Delineate the possible causes of cerebral infarction/ischemia. - 3. Discuss the common locations of arteriovenous shunts and their presentation, evaluation, and treatment (includes dural AVM). - 4. Discuss the embryology of the cerebral and spinal vasculature and its possible role in vascular anomalies in children. - 5. Describe the common locations and types of aneurysms seen in children and how they differ from those seen in adults. - 6. List the possible presentations of Vein of Galen aneurysms, their diagnosis and management. - 7. List the possible causes of aneurysms in children which are not congenital in nature. - 8. Describe the pathophysiology, treatment, and outcome of intraventricular hemorrhage in the neonate. #### **Trauma** - 1. List the appropriate diagnostic tests to evaluate a child who has sustained multisystem trauma. - 2. Describe the Glasgow Coma Scale and its use. - 3. List the salient historical and exam features which lead one to the diagnosis of non-accidental trauma. - 4. Discuss the management of the cervical spine in a child who is comatose. - 5. Describe the anatomy of the child's spine which causes the epidemiology of spinal cord injury to differ from adults. - 6. Describe the common injuries seen as a result of birth trauma and discuss their diagnosis and management. - 7. Describe the use of antibiotics and anticonvulsants in CNS trauma. - 8. Review the evaluation and management of a child who has sustained a head injury with loss of consciousness but is now awake. - 9. Discuss the management of depressed skull fractures, both open and closed. - 10. Describe the diagnosis and management of spinal column injury. - 11. Discuss the diagnosis and management of spinal cord injury without radiologic abnormality (SCIWORA). - 12. Describe the intracranial pressure (ICP) compliance curve and discuss its utility in the management of head injury. - 13. List the parameters needed to decide on letting an athlete who has sustained a CNS injury return to activity. - 14. Discuss the concept of "brain death", its diagnosis and role in organ donation. - 15. Discuss the importance and interplay between ICP and cerebral perfusion pressure (CPP) in the management of head and spinal cord injury. - 16. Define the concept of "secondary injury". - 17. Discuss the role of invasive monitoring in all its forms in closed head injury (CHI). # ชั้นปีที่ 4: Myelomeningocele and its Variants, Meningocele, Encephalocele, Chiari Malformations, Occult Spinal Dysraphism, Split Cord Anomalies, Segmentation Anomalies, Craniofacial Syndromes and Phakomatosis - 1. Enumerate the indications for surgery, surgical options and expected outcomes for each disease entity. - 2. Explain the indications for and utility of intraoperative monitoring. - 3. Describe appropriate timing of intervention and its rationale. - 4. Describe the pathophysiology and presentation of the tethered cord syndrome. ### Hydrocephalus and Other Disorders of CSF Circulation - 1. Describe normal ICP dynamics and their relation to establishing a differential diagnosis of CSF flow disturbance. - 2. Define "slit ventricle system" and how it is diagnosed and treated. - 3. Define "brain compliance" and relate how that can affect ventricular size. - 4. List indications for and describe technique of accessing a shunt for CSF samples. - 5. List disease states which are commonly associated with hydrocephalus. ### Neoplasia - 1. Discuss the differential diagnosis and evaluation of tumors located in the following areas: - suprasellar - pineal region - intraventricular - 2. Discuss the treatment/diagnostic options for tumors in each location listed in #1 including surgical approaches. - 3. Describe the appropriate evaluation and treatment of patients with neoplastic processes associated with: - neurofibromatosis - tuberous sclerosis - von Hippel Lindau - 4. Discuss the appropriate use of skull base approaches for specific tumor locations. - 5. List tumors which will require adjunctive therapy and describe those therapies and potential complications thereof. - 6. Discuss the global management of tumoral hydrocephalus. - 7. Cite the long-term outcome and complications for treatment of the common cerebellar and supratentorial hemispheric tumors. #### Infection - 1. Compare the differing patterns of infection as seen in immune-compromised patients to those with a functioning immune system. - 2. Discuss the sequelae of CNS infection, both shunt-related and non-shunt-related. - 3. List all acceptable treatment options for CNS infection with the pros and cons of each plan. - 4. Demonstrate an understanding of the different etiologies for subdural and epidural empyema and brain abscess and differing treatments thereof. - 5. Provide a complete differential diagnosis in regard to infectious disease for ring enhancing brain lesions. - 6. Discuss the role of osteomyelitis in CNS infection. - 7. Differentiate radiographically between infection and tumor of bone. #### Other - 1. Discuss variance in the surgical management of tumoral vs non-tumoral seizure foci. - 2. Discuss surgical options, indications and outcome for non-lesional approaches (e.g., callosotomy). - 3. Discuss various surgical options for the management of spasticity. - 4. Discuss preoperative evaluation and planning for seizure treatment. - 5. Discuss preoperative evaluation and planning for treatment of spasticity and postoperative management. #### Cerebrovascular - 1. Describe the nomenclature for congenital vascular anomalies and what, if any, role inheritance plays. - 2. Describe the pathology, risk factors, diagnosis and treatment of moyamoya in children. - 3. List the phakomatoses which have vascular anomalies associated with them and their treatment. #### **Trauma** - 1. Discuss the role of apoptosis in brain and spinal cord injury. - 2. Compare the utility of epidural, subdural, parenchymal, and intraventricular ICP monitoring. - 3. Differentiate between retinal hemorrhages and Terson's syndrome. - 4. Describe the role of electrophysiological monitoring in the management and prognostication of the CNS injured patient. - 5. Discuss the evidence for and role of steroid therapy in CNS injury. - 6. Discuss the prognosis and management of penetrating injuries to the brain and spine. - 7. Discuss the management of CSF leaks after head injury. - 8. Describe the diagnosis and treatment of a traumatic leptomeningeal cyst. # ชั้นปีที่ 5: Myelomeningocele and its Variants, Meningocele, Encephalocele, Chiari Malformations, Occult Spinal Dysraphism, Split Cord Anomalies, Segmentation Anomalies, Craniofacial Syndromes and Phakomatosis - 1. Differentiate between the use of rigid and non-rigid skeletal fixation in the appropriate surgical setting for this group of disorders. - 2. Explain the rationale for surgical treatment of a symptomatic disease. ### Hydrocephalus and Other Disorders of CSF Circulation - 1. Discuss the utility of expansion craniotomy in the treatment of hydrocephalus. - 2. Differentiate between ventriculomegaly, compensated hydrocephalus, and pseudotumor cerebri. - 3. Describe the pertinent anatomy of the ventricular system and prepontine cisterns. - 4. Describe the role of venous outflow obstruction in hydrocephalus. ### Neoplasia - 1. Describe the pertinent surgical anatomy for approaches to tumors in the following locations: - suprasellar - pineal region - intraventricular - 2. Discuss the role of endoscopic third ventriculostomy in management of tumoral hydrocephalus. - 3. Cite the long-term outcome and complications of all treatment options for tumors arising in the following locations: - suprasellar - pineal region - intraventricular - 4. Discuss the utility of preoperative embolization and/or chemotherapy in the surgical management of specific tumors. - 5. Discuss the role of stereotactic radiosurgery in the management of selected tumors. - 6. Describe the
presentations of hypothalamic hamartomas and the role of surgery in management. - 7. Describe options for CNS monitoring during surgical therapy and their efficacy. - 8. Discuss options for treatment and expected outcomes for recurrent tumors. ### Infection - 1. Describe in detail the differential diagnosis, evolution and treatment options of an immunecompromised patient with a ring enhancing brain lesion. - 2. List the important aspects of the patient's history which may lead one to entertain the diagnosis of CNS infection, both shunt-related and non-shunt-related. - 3. List diagnostic tools, other than CSF culture, which are utilized to diagnose a shunt infection. #### Cerebrovascular - 1. List the locations for traumatic vascular lesions and their risk factors, diagnosis, and treatment. - 2. Discuss management options and controversies in the treatment of vascular disease in children. ### **Trauma** - 1. Discuss the potential complications and evaluation of comatose patients with skull base fractures. - 2. Discuss the utility of lumbar drains and expansion craniectomy and the removal of frontal or temporal lobe in the management of refractory elevated ICP. - 3. Describe the approaches to the management of traumatic ICH and its supporting data, both surgical and non-surgical. - 4. List the vascular and endocrine complications seen after head injury. - 5. Discuss the long-term management of a child who has sustained CNS trauma including rehabilitation and neuro-cognitive issues. - 6. Discuss the management of peripheral nerve injuries in a child. #### COMPETENCY-BASED PERFORMANCE OBJECTIVES: ## ชั้นปีที่ 2-3: - 1. Perform complete history, physical examination and assessment on newborns, infants, and children. - 2. Interpret results of the physical examination, laboratory and radiological studies to arrive at a differential diagnosis. - 3. Perform subdural, intraventricular and lumbar punctures in children. - 4. Perform a shunt tap. - 5. Perform a twist drill or burr hole for subdural, parenchymal, or ventricular access or as part of a craniotomy. - 6. Perform a craniotomy or craniectomy for evacuation of subdural or epidural lesion. - 7. Perform a craniectomy as part of skull biopsy. - 8. Perform craniotomy for elevation of depressed skull fracture. - 9. Place a ventriculoperitoneal, jugular, or pleural shunt. - 10. Revise a ventriculoperitoneal, jugular, or pleural shunt. - 11. Perform a cranioplasty with artificial material or homologous material. - 12. Perform a laminectomy in a patient with normal spinal anatomy. - 13. Position a patient for intracranial or intraspinal surgery. - 14. Demonstrate an ability to open and close cranial and spinal wounds to include dural opening and repair. - 15. Complete a sagittal synostectomy. - 1. Close an open spinal or cranial neural tube defect. - 2. Repair an intracranial encephalocele. - 3. Perform the opening for a complex craniofacial repair. - 4. Perform the exposure for supratentorial and infratentorial lesions (excluding pineal, suprasellar and intraventricular locations). - 5. Perform the exposure for spinal exploration in a patient with abnormal spinal anatomy or reoperation. - 6. Evacuate an intraparenchymal hematoma. - 7. Accomplish endoscopic third ventriculostomy in uncomplicated settings. - 8. Apply and utilize frameless or framed stereotactic modalities for lesion location and shunt placement. - 9. Accomplish repair of a Chiari malformation. - 10. Accomplish an uncomplicated detethering procedure. - 11. Perform a cranial vault expansion. - 12. Perform placement of baclofen type pumps. - 13. Perform spinal fusion without instrumentation. - 14. Apply a vagal nerve stimulator. # **ชั้น**ๆีไที่ 5∙ - 1. Perform exposure for suprasellar, pineal and intraventricular lesion (including orbito-frontal, transcallosal and supracerebellar). - 2. Remove uncomplicated posterior fossa and supratentorial lesions. - 3. Repair complex tethered cords (e.g. lipomyelomeningocele, retethering, and diastematomyelia). - 4. Accomplish exposure for intradural spinal neoplasms. - 5. Utilize an endoscope to communicate trapped CSF spaces. - 6. Remove intracranial vascular malformation less than 3 cm in size and in non-eloquent brain. - 7. Perform placement of grids for seizure monitoring. - 8. Perform rhizotomy for spasticity. - 9. Perform temporal lobectomy in an uncomplicated patient. - 10. Perform stereotactic biopsy of supratentorial lesion. - 11. Perform spinal fusion utilizing instrumentation. - 12. Accomplish endoscopic third ventriculostomy in uncomplicated settings. - 13. Assist with complex craniofacial surgery. - 14. Assist with a vascular procedure for moyamoya disease. #### SURGERY OF THE PERIPHERAL NERVOUS SYSTEM ### **UNIT OBJECTIVES** Demonstrate an understanding of the anatomy, physiology, pathophysiology, and presentation of peripheral nerve diseases. Demonstrate the ability to formulate and implement a diagnostic and treatment plan for diseases of the peripheral nerves that are amenable to surgical intervention. ### **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** ## ชั้นปีที่ 2-3: - 1. Define the peripheral nervous system versus the central nervous system. - 2. Discuss the major structural elements of a peripheral nerve: - epineurium - perineurium - endoneurium - axon - fascicle - Schwann cell - connective tissue - motor end plate - sensory receptor - 12. Discuss the blood supply of the peripheral nerves. - 13. Discuss the blood-nerve barrier. - 14. Define axonal transport and differentiate fast from slow. - 15. Describe an action potential including the flow of ions. - 16. Describe the various nerve fibers in terms of size. - 17. Discuss the significance of fiber size in terms of function (e.g., c-fiber nociceptive). - 18. Discuss the various forms of action potential propagation. - 19. Discuss the pathophysiological response to various injuries by a nerve: - compression - ischemia - metabolic - concussive - stretch - 25. Define and discuss apoptosis. - 26. Define Wallerian degeneration. - 27. Discuss nerve regeneration: - sprouting - nerve growth factors - rate of growth - remyelination - 32. Define neuroma: - axonal tangle - mechano-sensitivity - neuroma-in-continuity - 36. Define and discuss the pathophysiology and clinical significance of the Tinel's sign. - 37. Describe the symptoms and signs of typical nerve injuries: - entrapment syndromes - stretch injuries - laceration injuries - concussive injuries - injection injuries - 43. Distinguish upper versus lower motor neuron symptoms and signs in nerve injury: - anatomical definition - degree of atrophy - distribution of weakness - reflex changes - potential for recovery - 49. Describe the classification of nerve injury: - Seddon classification - Sunderland classification - 52. List the major peripheral nerves of body. Describe the motor and sensory innervation of each. - 53. Draw the major components of the brachial plexus. - 54. Describe the rating scales for motor power. - 55. Describe the various sensory modalities and how to examine each. - 56. Describe the symptoms and signs of common nerve entrapments: - carpal tunnel - ulnar entrapment at the elbow - lateral femoral cutaneous nerve - peroneal at fibular head - 61. Define EMG and NCV. - 62. Describe the changes in EMG and NCV in nerve entrapment. - 63. Describe the nonoperative and operative treatment of entrapment syndromes. - 64. Define: - coaptation - neurorrhaphy - neurotization - nerve transfer - 1. Define the autonomic nervous system: - differentiate sympathetic and parasympathetic - discuss anatomic distribution - identify the various neurotransmitters - discuss Horner's syndrome - 6. Compare and contrast a peripheral nerve to a cranial nerve: - histology - response to injury - root entry zone - 10. Describe nerve regeneration in terms of: - specificity - pruning of sprouts - end to side sprouting - 14. Draw the complete brachial plexus. - 15. Discuss the lumbar plexus. - 16. Discuss stretch injury, missile injury and avulsion injury: - definition - typical etiology - physical findings - electrical findings - nonoperative management - indications for surgery - intraoperative findings - potential for recovery - 25. Describe the anatomical location of the common entrapment sites. List the various bands and arcades that produce entrapment. - 26. Provide a differential diagnosis for common entrapment syndromes: - differentiate radiculopathies from entrapments - discuss repetitive strain disorder - 29. Discuss uncommon entrapment neuropathies: - Guyon's canal - suprascapular entrapment - radial tunnel/PIN - median nerve in forearm/AIN - tarsal tunnel (anterior and posterior) - pyriformis syndrome - 36. Explain the use of EMG/NCV in the management of peripheral nerve disorders: - physiology - typical findings in neuropathy - typical findings in nerve injury - typical findings in nerve regeneration - 41. Discuss the common metabolic/inherited neuropathies. - 42. Discuss burn and electrical injury effects on nerves. - 43. Classify peripheral nerve tumors. - 44. Discuss the pathophysiology of NF1 and NF2. - 45. Discuss the timing of peripheral nerve surgery: - laceration injury - blunt injury - missile injury - iatrogenic injury - surgical injury - injection injury - 52. Discuss outcome priorities in brachial plexus surgery: - motor versus sensory - functional outcome- elbow flexion, shoulder abduction, etc. - 55. Discuss tension at the nerve repair site. - 56. Discuss nerve repair techniques: - direct coaptation - nerve graft - nerve transfer - donor (graft) nerves - epineurial repair - fascicular repair - 63. Describe intra-operative nerve evaluation: - visual - palpation - internal neurolysis - nerve conduction - biopsy # **ชั้น**ๆ็ไที่ ร∙ - 1. Discuss with the aid of diagrams the anatomy of the peripheral nervous system: - common sites of entrapments - the brachial and lumbar plexus - innervation of the bladder - 5. Discuss the use of nerve grafting: -
types of fixation (suture/glue) - types of grafts (nerve, vein, artificial) - end to side - 9. Discuss entrapment syndromes: - thoracic outlet - double crush syndrome - repetitive strain - 13. Discuss ulnar nerve decompression: - in situ decompression - transposition (subcutaneous/intramuscular/submuscular) - medial epicondylectomy - 17. Differentiate brachial plexus injury from brachial plexitis. - 18. Formulate a management plan for: - birth brachial plexus injury - acute nerve injury (stretch/compression/laceration/injection) - chronic nerve injury - failed nerve decompression - painful nerve/neuroma - 24. Describe the management of nerve tumors: - imaging techniques, including MR neurography - indications for surgery in NF1 - operative and adjuvant treatment for malignant peripheral nerve sheath tumors - use of monitoring during tumor surgery - fascicular dissection - 30. Describe adjuvant therapies in nerve injury: - muscle and tendon transfers - prosthesis - joint fusion ### **COMPETENCY-BASED PERFORMANCE OBJECTIVES:** # ชั้นปีที่ 2-3: - 1. Obtain a history and perform a motor and sensory examination of the peripheral nervous system. - 2. Based on history and physical, anatomically localize the lesion. - 3. Obtain appropriate ancillary tests: - EMG/NCV - metabolic screens - imaging studies - 7. Formulate a differential diagnosis for common entrapments. - 8. Position and prep for common entrapment releases. - 9. Perform a diagnostic nerve and muscle biopsy. - 10. Obtain sural nerve for grafting. - 1. Perform pre- and postoperative care of the patient with a peripheral nerve injury. - 2. Evaluate a child with birth palsy. - 3. Position a patient for nerve surgery: - all entrapment sites - brachial plexus surgery - 6. Perform a neurolysis/decompression. - 7. Expose the brachial plexus. - 8. Manage the pain associated with nerve injury: - use of medications - use of rehabilitation - use of stimulation # ชั้นปีที่ 5: - 1. Perform a consultation concerning a nerve injury. - 2. Discuss the risks versus benefits of a surgical repair of a given nerve injury. - 3. Determine the parameters confirming anticipated nerve regeneration: - anticipated advancing Tinel's sign - order of muscle re-innervation - 6. Perform a nerve decompression: - carpal tunnel - ulnar nerve at elbow - peroneal nerve - 10. Perform a nerve repair: - neurolysis - internal neurolysis - intraoperative nerve conductions - placement and suture of nerve graft - 15. Excise a nerve sheath tumor. - 16. Expose a brachial plexus injury: - determine possible repairs including nerve transfers - expose the spinal accessory nerve - expose the intercostal nerves ## SPINAL SURGERY #### **UNIT OBJECTIVES** Demonstrate an understanding of the anatomy, physiology, pathophysiology, and presentation of disorders of the spine, its connecting ligaments, the spinal cord, the cauda equina, and the spinal roots. Demonstrate the ability to formulate and implement a diagnostic and treatment plan for diseases of the spine, its connecting ligaments, the spinal cord, the cauda equina, and the spinal roots that are amenable to surgical intervention. ### **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** # ชั้นปีที่ 2-3: - 1. Review the anatomy of the craniocervical junction, cervical, thoracic, and lumbar spine, sacrum, and pelvis. - 2. Interpret plain and dynamic radiographs, bone scans, myelograms, computerized tomographic (CT) scans, and magnetic resonance (MR) scans of patients with spinal disorders. - 3. Review the signs, symptoms, and pathophysiology of common syndromes of degenerative spinal disorders: radiculopathy, myelopathy, instability, and neurogenic claudication. - 4. Identify the common syndromes of spinal cord injury, including complete transverse injury, anterior cord injury, Brown-Sequard injury, central cord injury, cruciate paralysis, syringomyelia, conus syndrome, and sacral sparing. Describe the pathophysiology of spinal cord injury. - 5. Describe the cauda equina syndrome. - 6. Recite the differential diagnosis of cervical, thoracic, and lumbar pain. - 7. Discuss the indications for cervical, thoracic, and lumbar discectomy. - 8. Identify non-surgical spinal cord syndromes including amyotrophic lateral sclerosis, demyelinating conditions, and combined systems disease. - 9. Review the initial management of spine and spinal cord injured patients including immobilization, traction, reduction, appropriate radiographic studies, and medical management. - 10. Classify fractures, dislocations, and ligament injuries of the craniocervical region, subaxial cervical spine, thoracic, thoracolumbar junction, lumbar, and sacral spine. Describe the mechanism of injury and classify the injuries as stable or unstable. Review the indications for surgical management. - 11. Discuss briefly the concept of grading schemes for spinal cord injury and myelopathy. - 1. Review the biomechanics of the craniocervical junction, cervical spine, and thoracolumbar and lumbar spine. - 2. Review the biomechanics of common internal spinal fixators. - 3. Review the definition of spinal instability based upon the principles of Punjabi and White and other authors. - 4. Recognize the radiographic signs of degenerative neoplastic, traumatic, and congenital spinal instability. - 5. Review the indications for, and uses, and relative effectiveness of common spinal orthoses. Discuss the degree of segmental and regional immobilization these orthoses provide. - 6. Review the indications for, and physiology of, intraoperative spinal cord monitoring. Describe the technical aspects of intraoperative spinal cord monitoring. - 7. Compare and contrast indications for anterior and posterior approaches to the cervical spine for the treatment of herniated cervical discs, spondylosis, and instability. - 8. Discuss the role of corpectomy in the management of cervical disorders. - 9. Compare and contrast the indications for anterior cervical discectomy with and without anterior interbody fusion. - 10. Discuss the indications and techniques for anterior and posterior cervical spinal internal fixators. - 11. Explain the biology of bone healing and options for bone grafting in spinal surgery. - 12. Review the diagnosis and management of primary spinal tumors, spinal cord tumors, and spinal metastatic disease including indications for dorsal decompression, ventral decompression, and radiotherapy. - 13. Discuss the management principles for gunshot and other penetrating wounds to the spine. - 14. Review the signs, symptoms, and management options in the treatment of the adult tethered cord syndrome and syringomyelia. - 15. Review management principles for spontaneous and postoperative spinal infections. - 16. Review the management principles for intraoperative and postoperative cerebrospinal fluid leaks. - 17. Discuss the surgical management of intradural congenital, neoplastic, and vascular lesions. - 1. Describe indications for the use of angiography and endovascular procedures in the management of spinal disorders. - 2. Discuss the management of cervical degenerative disease secondary to rheumatoid arthritis. Describe factors which make it different from the management of non-rheumatoid disease. - 3. Compare and contrast the treatment options for cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament, including multilevel anterior cervical corpectomy and fusion, laminectomy, laminectomy and fusion, laminoplasty, and nonoperative therapies. - 4. Discuss the indications for posterior cervical spinal internal fixators. - 5. Compare and contrast the transthoracic, transpedicular, costotransverse, and lateral extracavitary approaches to a herniated thoracic disc, thoracic tumor, or thoracic spinal injury. - 6. Discuss the indications for lumbar fusion for congenital disorders, iatrogenic disease, and degenerative disease, ranking indications from least to most controversial. - 7. Compare and contrast the indications for anterior or posterior lumbar interbody fusion and intertransverse fusion for lumbar disease. - 8. Discuss internal fixation options for posterior lumbar interbody fusion and intertransverse fusion. - 9. Summarize the most common types of spinal tumors in the following categories: - intradural/intramedullary - intradural/extramedullary - extradural/extramedullary. - 13. Discuss non-operative and operative treatment options for fractures and dislocations affecting the atlas and axis. - 14. Compare and contrast the indications for non-operative treatment, anterior approaches, and posterior operative approaches for the treatment of fractures and dislocations of the subaxial cervical spine. - 15. Describe the indications for anterior, posterior, and posterolateral procedures in the management of thoracolumbar tumor, trauma, or infection. - 16. Compare and contrast the indications for anterior and posterior spinal fixators in the management of thoracolumbar tumor, trauma, or infection. - 17. Discuss reconstruction options for vertebral body defects after corpectomy for tumor, trauma, or infection. #### **COMPETENCY-BASED PERFORMANCE OBJECTIVES:** ## ชั้นปีที่ 2-3: # ชั้นๆีไที่ 4: - 1. Demonstrate the ability to prepare structural allografts for use in spinal surgery. - 2. Determine the need for postoperative inpatient or outpatient rehabilitation in patients with spinal disorders. - 3. Demonstrate the ability to perform a ventral exposure of the cervical spine followed by anterior cervical discectomy. - 4. Demonstrate the ability to perform an anterior cervical interbody arthrodesis. - 5. Demonstrate the ability to place anterior cervical instrumentation. - 6. Demonstrate the ability to perform posterior cervical decompressive laminectomy. - 7. Demonstrate the ability to perform posterior cervical foraminotomy with or without discectomy. - 8. Demonstrate the ability to perform medial and lateral approaches to a far lateral lumbar disc herniation. - 9. Demonstrate appropriate
surgical technique in the management of recurrent lumbar disc herniations and recurrent lumbar stenosis. - 10. Demonstrate the ability to perform posterior lumbar arthrodesis with or without the use of interbody instrumentation. - 11. Demonstrate exposure of the cervical lateral masses, thoracic and lumbar transverse processes, and the sacral ala. - 12. Demonstrate the ability to perform posterior/intertransverse arthrodesis in the cervical, thoracic and lumbar regions. - 13. Demonstrate the ability to perform a laminectomy with or without transpedicular decompression for tumor, infection, or trauma. - 14. Demonstrate techniques for spinous process arthrodesis of the subaxial cervical spine for fracture or dislocation. - 15. Demonstrate the ability to manage postoperative complications of spinal surgery including: - hematoma - infection - spinal fluid leak - new neurologic deficit - 16. Demonstrate the ability to perform a tethered cord release. - 1. Demonstrate the ability to function independently in all phases of management of patients with spinal disorders. - 2. Demonstrate the ability to perform occipital-cervical arthrodesis. - 3. Demonstrate the ability to properly place sublaminar wires, lateral mass screws, lower cervical/upper thoracic pedicle screws, C2 pars interarticularis screws, and C1-2 transarticular screws for the management of cervical spine disorders. - 4. Demonstrate the ability to perform, with assistance if necessary, transoral odontoidectomy. - 5. Demonstrate common techniques for performing C1-2 arthrodesis. - 6. Demonstrate the ability to perform anterior cervical corpectomy followed by arthrodesis. - 7. Demonstrate the ability to perform, with assistance if necessary, transthoracic, thoracoabdominal, retroperitoneal, and transabdominal approaches to the thoracic and lumbar spine. - 8. Demonstrate the ability to perform costotransverse and lateral extracavitary approaches to the thoracolumbar spine. - 9. Demonstrate the ability to excise a herniated thoracic disc by use of the above-mentioned approaches. - 10. Demonstrate the ability to perform vertebral corpectomy of the thoracolumbar spine for tumor, infection, or trauma, utilizing the above-mentioned approaches. - 11. Demonstrate the ability to perform anterior arthrodesis of the thoracolumbar spine. - 12. Demonstrate the proper placement of transpedicular screws in the thoracic and lumbar spine. - 13. Demonstrate the proper placement of laminar, transverse process, and pedicle hooks in the thoracic and lumbar spine. - 14. Demonstrate the ability to resect intradural spinal neoplasms. - 15. Demonstrate the ability to perform methylmethacrylate vertebroplasty. - 16. Demonstrate techniques of open reduction of fractures and dislocations of the cervical, thoracic, and lumbar spine. - 17. Demonstrate the ability to surgically manage arachnoid cysts and spinal cord syrinx. - 18. Demonstrate the ability to perform intradural procedures for congenital, neoplastic, and vascular lesions. #### STEREOTACTIC AND FUNCTIONAL NEUROSURGERY ### **UNIT OBJECTIVES** Define neurosurgical stereotactic procedures and recognize their proper application. Describe the appropriate anatomy, physiology, and presentation of patients that are candidates for stereotactic procedures. ### **COMPETENCY-BASED KNOWLEDGE OBJECTIVES:** ## ชั้นปีที่ 2-3: - 1. Discuss the considerations of stereotactic frame placement in regard to target localization and purpose of procedure (biopsy, craniotomy, functional, radiosurgery). - 2. Describe the direct and indirect basal ganglion-thalamocortical motor pathways. - 3. Define and distinguish each of the following entities: - tremor - rigidity - dystonia - chorea - athetosis - 4. Describe the pathophysiology of Parkinson's disease and cerebellar tremor. - 5. Explain the primary symptoms treated by ventro-lateral (VL) thalamotomy pallidotomy. - 6. Discuss the advantages and disadvantages of stereotactic biopsy compared to open biopsy procedures. - 7. Discuss the differential diagnosis of a newly discovered ring-enhancing intracranial mass. - 8. Discuss the differential diagnosis of a newly discovered non-enhancing intracranial mass. - 9. Define different seizure types (partial, partial-complex, generalized, etc). - 10. Define medically intractable epilepsy. - 11. Describe the anatomy of the mesial temporal lobe. - 12. Define brachytherapy. - 13. Define conventional care for patients with high-grade gliomas. - 14. Review the limitations of conventional care for patients with high-grade gliomas. - 15. Describe the anatomy of the trigeminal nuclei, root, ganglion and divisions. - 16. Define typical trigeminal neuralgia, atypical trigeminal neuralgia, and trigeminal neuropathy. - 17. Explain the potential causes for trigeminal neuralgia. - 18. Define stereotactic radiosurgery. - 19. Explain the differences between radiosurgery and radiation therapy. - 20. List the potential indications for radiosurgery. - 21. List the reported complications of radiosurgery. - 22. Compare advantages and disadvantages of frame-based or frameless stereotactic craniotomies to non-stereotactic craniotomies. ## หั้นๆีไที่ **4**• - 1. Describe factors guiding the choice of neuroimaging (CT, MRI, and angiography) for stereotactic procedures. - 2. Explain the rationale for various MRI sequences used for tumor localization and functional procedures. - 3. Discuss the benefits and limitations of frame-based stereotactic procedures. - 4. Discuss patient selection for VL thalamotomy and pallidotomy. - 5. Discuss the advantages and disadvantages of ablative procedures. - 6. List the potential complications of VL thalamotomy, pallidotomy, and bilateral thalamotomies or pallidotomies. - 7. Discuss technical considerations to minimize the potential for an intracranial hemorrhage after a stereotactic biopsy. - 8. Discuss technical considerations to minimize the potential for a non-diagnostic stereotactic biopsy. - 9. Describe the appropriate trajectories to biopsy a lesion in the pineal region, midbrain, pons, and medulla. - 10. Compare the advantages and disadvantages of radiosurgery and surgical resection for tumors and vascular malformations. # ชั้นปีที่ ระ - 1. Identify the microelectrode recordings of the thalamus and globus pallidus. - 2. Identify the primary indications for medial thalamotomy and cingulotomy. - 3. Describe the evaluation of a patient with medically intractable epilepsy. - 4. Discuss the indications for placement of depth electrodes. - 5. Describe the surgical treatment of epilepsy in detail. - 6. Discuss the theoretical advantages of brachytherapy over external beam radiation therapy. - 7. Describe the most common complications of brachytherapy and their treatment. - 8. Explain the effect of patient selection on the reported results of brachytherapy for high-grade gliomas. - 9. Describe the methods used to localize and percutaneously penetrate the foramen ovale. - 10. List the potential advantages and disadvantages for the following trigeminal rhizotomy procedures: - glycerol - radiofrequency - balloon compression - 11. Discuss the dose-volume relationships for radiation-related complications after radiosurgery. - 12. Discuss potential sources of inaccuracy for stereotactic procedures. - 13. Discuss advantages and disadvantages of deep brain stimulation compared to ablative techniques. ### **COMPETENCY-BASED PERFORMANCE OBJECTIVES:** # ชั้นปีที่ 4: 1. Perform stereotactic biopsy. # ชั้นปีที่ 5: 1. Perform stereotactic craniotomies. ### ภาคผนวก ข ## **Entrusable Professional Activities** เมื่อสิ้นสุดการฝึกอบรมในแต่ละปีการศึกษา แพทย์ประจำบ้านควรมีความรู้ความสามารถในการดูแลรักษา และ ทำหัตถการต่อไปนี้ ## 1. EPA Care for Brain Tumor patients Competency domain (Abbreviated as CD in table) - 1. Patient care - 2. Medical knowledge - 3. Practice-based Learning and Improvement - 4. Interpersonal and Communication Skills - 5. Professionalism - 6. Systems-based Practice | Milestones | CD | Assessment | | |---|----|---|--| | 1st year resident | | | | | Clinical evaluation including history taking,physical and neurological examination. | 1 | - Workplace based evaluation | | | 2nd year resident | | | | | Order important laboratory and radiographic investigation in brain tumor patients. | 1 | - Workplace based evaluation | | | Describe clinical knowledges regarding:pathophysiology of mass lesions and obstructive hydrocephalus, acute symptomatic medical therapy for neoplastic mass lesions (e.g., steroids, ventricular drainage). | 1 | - Workplace based evaluation - Paper exam | | | Provides routine peri- operative care for patients with in brain tumor patients. | 1 | - Workplace based evaluation | | | Milestones | CD | Assessment | | |---|----------|---|--| | 3rd year resident | | | | | Describe clinical knowledges regarding: the genetics of brain tumors and genetic markers, the use of advanced imaging intumor evaluation and surgical planning (e.g.,magnetic resonance[MR]tractography, functional imaging, spectroscopy), the use of neuro-navigation and intra-operative imaging for brain tumor surgery, the role of skull-base surgical approaches in tumor resection. | 1 | - Workplace based evaluation - Paper exam | | | Clinical appraisal the indications resection and biopsy or adjuvant therapy based on clinical and
radiographic information, the risks, and benefits of treatment modalities on various types of brain tumor. | 1,2,3 | - Workplace based evaluation | | | Interpret image finding in brain tumor patients. | 1,2 | - Workplace based evaluation - Paper exam | | | Assist in routine part of the procedure and provide perioperative care. | 1 | - Workplace based evaluation | | | 4th year resident | <u> </u> | | | | Perform routine part of the procedure independently and perform complex procedure with assistance. | 1,3 | - Workplace based evaluation - Log book | | | Recognize and manage complication with assistance. | 1,3 | - Workplace based evaluation | | | 5th year resident | | | | | Independently formulate and perform complex surgery in brain tumor patients. | 1,3 | - Workplace based evaluation - Log book | | | Manage complication independently. | 1,3 | - workplace based evaluation | | ### 2. EPA Care for Degenerative spine disease patients - 1. Patient care - 2. Medical knowledge - 3. Practice-based Learning and Improvement - 4. Interpersonal and Communication Skills - 5. Professionalism - 6. Systems-based Practice | Milestone | CD | Assessment | |---|----|------------------------------| | 1st year resident | | | | Clinical evaluation including history taking,physical and neurological examination. | 1 | - Workplace based evaluation | | 2nd year resident | | | | Order important laboratory and radiographic investigation in spine degenerative patient. | 1 | - Workplace based evaluation | | Provides routine peri- operative care for patients with Spine degenerative disease. | 1 | - Workplace based evaluation | | Describe the knowledge regarding Spine anatomy and biomechanics, physical findings and differential diagnosis of degenerative spinal disorders. | 2 | - Paper exam | | 3rd year resident | | | | Interpret imaging study, electrophysiologic finding. | 2 | - Paper exam | | Clinical appraisal the indication for surgery or other treatment modalities for spine degenerative disease patients based on clinical, radiographic, and electrophysiologic informations, risks and benefits. | 1 | - Workplace based evaluation | | Assist in routine procedure. | 1 | - Workplace based evaluation | | Milestone | CD | Assessment | |---|----|---| | 4th year resident | | | | Formulate and perform routine procedure for degenerative spine disease independently. | 1 | - Workplace based evaluation - Log book | | Assist in complex procedure for degenerative spine disease. | 1 | - Workplace based evaluation - Log book | | Describe the knowledge regarding the pathophysiology of degenerative spondylotic myeloradiculopathy, degenerative spinal deformities, the role of instrumentation and bony fusion in surgery for degenerative spinal disorders. | 2 | - Paper exam | | 5th year resident | | | | Formulate and perform complex procedure for degenerative spine disease independently. | 1 | - Workplace based evaluation - Log book | ### 3. EPA Care for spinal trauma, tumor, infection diseases patients - 1. Patient care - 2. Medical knowledge - 3. Practice-based Learning and Improvement - 4. Interpersonal and Communication Skills - 5. Professionalism - 6. Systems-based Practice | Milestone | CD | Assessment | |--|----|----------------------------| | 1st year resident | | | | Clinical evaluation including history taking,physical and neurological examination. | 1 | Workplace based assessment | | 2nd year resident | | | | Order important laboratory and radiographic investigation in spine trauma tumor,infection patient. | 1 | Workplace based assessment | | Provide initial and perioperative management, safety position. | 1 | Workplace based assessment | | Describe knowledge regarding spinal cord and cauda equina anatomy, dermatomal sensory and motor levels and patterns of spinal cord injury, spinal stability and instability,pathophysiology of spine and spinal cord injuries. | 2 | Paper exam | | 3rd year resident | | | | Clinical appraisal the indication for surgery or other treatment modalities for spine tumor, trauma, infection patients based on clinical, radiographic, and electrophysiologic informations, risks and benefits | 1 | Workplace based assessment | | Perform nonoperative procedure eg cervical traction, halo immobilization and other bracing, as well as order medical management for spinal trauma, tumor, infection | 1 | Workplace based assessment | | Milestone | CD | Assessment | |--|----|-------------------------------------| | Describe knowledge regarding spinal fracture classifications, the natural history of primary spinal tumors and spinal infection | 2 | Paper exam | | 4th year resident | | | | Formulate plan and perform simple procedure for spinal tumor, trauma, and infection | 1 | Workplace based assessment Log book | | Recognize and manage complication with assistance | 1 | Workplace based assessment | | Describe knowledge regarding pathophysiology and imaging findings of spinal tumors and spinal infection, the role of instrumentation and bony fusion in surgery for spinal trauma, tumor, or infection | 2 | Paper exam | | 5th year resident | | | | Independently formulate and perform complex procedure for spinal tumor trauma and infections | 1 | Workplace based assessment Log book | | Manage complication independently | 1 | Workplace based assessment | ### 4. EPA Care for patients with TBI - 1. Patient care - 2. Medical knowledge - 3. Practice-based Learning and Improvement - 4. Interpersonal and Communication Skills - 5. Professionalism - 6. Systems-based Practice | Milestone | CD | assessment | |---|---------|---| | 1st year resident | | | | Clinical evaluation including history taking,physical and neurological examination. | 1 | - Workplace based evaluation | | 2nd year resident | | | | Order important laboratory and radiographic investigation in patient with polytrauma and TBI patients. | 1, 2, | - Paper exam - Workplace based evaluation | | Provides routine peri- operative care for patients with TBI. | 1,3 | - Workplace based evaluation | | 3rd year resident | | | | Clinical appraisal to perform surgery based on clinical and radiographic information, the risks, and benefits of surgery. | 1, 2, 3 | - Paper exam - Workplace based evaluation | | Organize surgical team,getting consents, prepare patients for operation, and assist in routine procedures. | 1,3,4 | - Workplace based evaluation - Log book | | 4th year resident | | | | Perform routine procedure independently and assist in complex surgery. | 1 | - Workplace based evaluation - Log book | | Recognize and treat complications with assistance. | 1 | - Workplace based evaluation | | Milestone | CD | assessment | |--|----|---| | 5th year resident | | | | Independently performs complex procedures. | 1 | - Workplace based evaluation - Log book | | Manage complication independently. | 1 | - Workplace based evaluation | ### **5. EPA Care for Vascular Neurosurgery patients** - 1. Patient care - 2. Medical knowledge - 3. Practice-based Learning and Improvement - 4. Interpersonal and Communication Skills - 5. Professionalism - 6. Systems-based Practice | Milestones | CD | Assessment | |---|-------|---| | 1st year resident | | | | Clinical evaluation including history taking,physical and neurological examination. | 1 | - Workplace based evaluation | | 2nd year resident | | | | Order important laboratory and radiographic investigation in vascular neurosurgery patient. | 1 | - Workplace based evaluation | | Describe clinical knowledges regarding: intracranial and extracranial vascular anatomy,mechanisms of cerebral autoregulation, clinical presentations and imaging characteristics of ischemic and hemorrhagic stroke,the embryology and anatomy of vascular lesions ,pathophysiology of intracranial and extracranial atherosclerotic disease. | 1,2 | - Workplace based evaluation - Paper exam | | 3rd year resident | | | | Clinical appraisal the indications to perform open surgery and endovascular surgery or therapy based on clinical and radiographic information, the risks, and benefits of treatment/surgery on various types of neurovascular lesion including ischemic stroke, carotid stenosis, aneurysm, AVM. | 1,2,3 | - Workplace based evaluation | | Milestones | CD | Assessment | |--|-----|---| | Interpret image finding in various types of Neurovascular lesion including ischemic stroke,
carotid stenosis, aneurysm, AVM. | 1,2 | - Workplace based evaluation - Paper exam | | Assist in routine part of the procedure and provide perioperative care. | 1 | - Workplace based evaluation | | 4th year resident | | | | Perform routine part of the procedure independently and perform complex procedure with assistance. | 1,3 | - Workplace based evaluation - Log book | | Recognize and manage complication with assistance. | 1,3 | - Workplace based evaluation | | 5th year resident | | | | Independently formulate and perform complex neurovascular procedure. | 1,3 | - Workplace based evaluation - Log book | | Manage complication independently. | 1,3 | - workplace based evaluation | #### ผนวก ค # เกณฑ์การประเมินแพทย์ประจำบ้านสาขาประสาทศัลยศาสตร์ สำหรับใช้ประกอบหลักสูตรฯ โดยราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย เพื่อให้บรรลุวัตถุประสงค์การเป็นแพทย์เฉพาะทางสาขาประสาทศัลยศาสตร์ที่มีคุณสมบัติ และความรู้ ความสามารถ ตามสมรรถนะหลักทั้ง 6 ด้านตามหลักสูตร สถาบันฝึกอบรมจะต้องทำการประเมินแพทย์ประจำ บ้านเป็นระยะๆ เพื่อให้เกิดการพัฒนาตามระดับชั้นปี และมีความพร้อมสำหรับการเสนอชื่อเพื่อเข้าสอบเพื่อ วุฒิบัตร ## 1. คุณสมบัติเพื่อเลื่อนระดับชั้นปี - 1.1 ปฏิบัติงานได้ไม่ต่ำกว่าร้อยละ 80 ของระยะเวลาที่กำหนด - 1.2 ผ่านการประเมินตามมิติต่างๆ ที่กำหนดในหลักสูตร โดยได้คะแนนไม่ต่ำกว่าร้อยละ 50 ของ แต่ละมิติ - 1.3 ปฏิบัติงานได้สอดคล้องตามข้อกำหนดของสถาบันฝึกอบรม - 1.4 ไม่ก่อให้เกิดความเสื่อมเสียแก่สถาบันฝึกอบรม ## 2. คุณสมบัติเพื่อรับการเสนอชื่อเข้าสอบเพื่อวุฒิบัตร - 2.1 ผ่านคุณสมบัติการประเมินเพื่อเลื่อนระดับชัน้ ปีครบทั้ง 4 ข้อ - 2.2 มีพฤติกรรมตามวิชาชีพที่เหมาะสม - 2.3 ต้องส่งผลงานวิจัยภายในกำหนดเวลา - 2.4 มีศักยภาพที่จะผ่านการฝึกอบรมในระดับแพทย์ประจำบ้านปีสุดท้ายตามหลักสูตร ### 3. ผลการประเมินแพทย์ประจำบ้าน - 3.1 ผ่านการประเมิน - 3.2 ไม่ผ่านการประเมินเพื่อเลื่อนชัน้ ปี ต้องปฏิบัติงานเพิ่มเติมในส่วนที่สถาบันกำหนด แล้วทำการ ประเมินซ้ำ ถ้าผ่านการประเมินจึงสามารถเลื่อนชัน้ ปีได้ - 3.3 ไม่ผ่านการประเมินเพื่อเลื่อนชัน้ ปีซ้ำตามข้อที่ 2 หรือไม่ผ่านการประเมินเพื่อรับการเสนอ ชื่อเข้าสอบวุฒิบัตร ต้องปฏิบัติงานในระยะชัน้ ปีเดิมอีก 1 ปี - 3.4 หลังจากปฏิบัติงานซ้ำในชัน้ ปีเดิมอีก 1 ปี แล้วยังไม่ผ่านการประเมินเพื่อเลื่อนชัน้ ปี ให้ยุติ การฝึกอบรม - 3.5 มติที่ประชุมคณะกรรมการบริหารฯ ราชวิทยาลัยฯ ให้สถาบันส่งผลการประเมินแพทย์ ประจำบ้านมายังคณะอนุกรรมการฝึกอบรมและสอบฯ ภายในวันที่ 15 กรกฎาคม ของทุกปี ### 4. การดำเนินการสำหรับผู้ที่ไม่ผ่านการประเมิน - 4.1 แจ้งผลการประเมินให้แพทย์ประจำบ้านรับทราบเป็นลายลักษณ์อักษรในแบบประเมินผล ของราชวิทยาลัยฯ พร้อมแนวทางการพัฒนา รายละเอียดการปฏิบัติงานเพิ่มเติม การกำกับ ดูแลและการประเมินผลซ้ำ - 4.2 เมื่อแพทย์ประจำบ้านลงชื่อรับทราบ ให้ส่งสำเนาผลการประเมินชุดหนึ่งให้อนุกรรมการ ฝึกอบรมและสอบ ราชวิทยาลัยฯ ### การดำเนินการเพื่อยุติการฝึกอบรม #### 5.1 การลาออก - แพทย์ประจำบ้านต้องทำเรื่องชี้แจงเหตุผลก่อนพักการปฏิบัติงานถ่วงหน้าอย่าง น้อย2 สัปดาห์ เมื่อสถาบันฝึกอบรมอนุมัติให้พักการปฏิบัติงานแล้วจึงแจ้งต่อ คณะอนุกรรมการฝึกอบรมและสอบฯ เพื่อเห็นชอบและแจ้งต่อแพทยสภาพร้อมความเห็น ประกอบว่าสมควรให้พักสิทธิก์ ารสมัครเป็นแพทย์ประจำบ้านเป็นเวลา 1 ปีในปีการศึกษา ถัดไปหรือไม่ โดยพิจารณาจากเหตุผลประกอบการลาออกและคำชี้แจงจากสถาบัน ฝึกอบรม การลาออกจะถือว่าสมบูรณ์เมื่อได้รับอนุมัติจากแพทยสภา ### 5.2 การให้ออก - 5.2.1 ปฏิบัติงานโคยขาดความรับผิดชอบหรือประพฤติตนเสื่อมเสียร้ายแรง จนก่อให้เกิดผลเสียต่อผู้ป่วยหรือต่อชื่อเสียงของสถาบันฝึกอบรม - 5.2.2 ปฏิบัติงานโดยขาดความรับผิดชอบหรือประพฤติตนเสื่อมเสีย ไม่มีการ ปรับปรุงพฤติกรรมหลังการตักเตือน และกระทำซ้ำภายหลังการภาคทัณฑ์เมื่อสถาบัน ฝึกอบรมเห็นสมควรให้ออก ให้ทำการแจ้งแพทย์ประจำบ้านรับทราบพร้อมให้พักการ ปฏิบัติงานแล้วทำเรื่องแจ้งต่อคณะอนุกรรมการฝึกอบรมและสอบฯ ซึ่งจะต้องตั้ง คณะกรรมการสอบสวนจำนวน 5 คนประกอบด้วยหัวหน้าสถาบันฝึกอบรมอื่นจำนวน 3 คน และกรรมการภายในสถาบันจำนวน 2 คน เพื่อดำเนินการให้เสร็จสิ้นภายใน 2 สัปดาห์ภายหลังจากได้รับเรื่อง ผลการสอบสวนจะถูกนำเสนอต่อที่ประชุม คณะอนุกรรมการฝึกอบรมและสอบฯ เพื่อลงความเห็น ถ้าสมควรให้ออกจึงแจ้งต่อแพทย สภาจนเมื่อได้รับการอนุมัติจึงถือว่าการให้ออกสมบูรณ์ ถ้าเห็นว่ายังไม่สมควรให้ออกจึง ส่งเรื่องคืนให้สถาบันฝึกอบรมพร้อมคำแนะนำ #### ผนวก ง # เกณฑ์ประสบการณ์การผ่าตัดขั้นต่ำประกอบการประเมินเพื่อวุฒิบัตรแสดง ความรู้ความชำนาญในการประกอบวิชาชีพเวชกรรม สาขา ประสาทศัลยศาสตร์ ## 1. ผ่าตัดด้วยตนเองภายใต้การควบคุมของอาจารย์ในโรคหรือภาวะต่อไปนี้ | Head injury | 30 ราย | |--|--------| | Cranial and Spinal Tumor (exclude stereotactic biopsy) | 25 ราย | | Spine (degenerative disease, trauma) | 25 ราย | | Vascular (spontaneous intracerbral hemorrhage, aneurysm, AVM etc.) | 15 ราย | ## 2. ผ่าตัดด้วยตนเองภายใต้การควบคุมของอาจารย์ในโรคหรือภาวะต่อไปนี้ อย่างน้อย 4 ข้อ | Infection(cranial & spinal) | 5 ราย | |---|--------| | Hydrocephalus(age more than 15) | 30 ราย | | Stereotactic & Functional Surgery procedure | 5 ราย | | Peripheral Nerve | 5 ราย | | Children (hydrocephalus and congenital malformation) | 5 ราย | | Basic Neurosurgical Technique (ventriculostomy, lumbar drain, etc.) | 60 ราย | ## 3. ช่วยผ่าตัดใน Complex case 60 ราย (craniopharyngioma, pituitary adenoma/transhpenoidal transcranial approach, vestibular schwannoma, complex skull basal/posterior fossa meningioma, aneuyrsm, AVM etc.) ผนวก จ คณะอนุกรรมการฝึกอบรมและสอบความรู้ความชำนาญ ในการประกอบวิชาชีพเวชกรรม สาขาประสาทศัลยศาสตร์ ศิวานวัฒน์ ประธาน นายแพทย์รุ่งศักดิ์ | R 1088M HO & MILLIN | II 9 I Katon ka | אותפנת | |----------------------|------------------|--------------------------| | นายแพทย์เกรียงศักดิ์ | ลิ้มพัสถาน | อนุกรรมการ | | นายแพทย์พรชัย | ยอควิศิษฎ์ศักดิ์ | อนุกรรมการ | | นายแพทย์กลินท์ | พนมมาศ | อนุกรรมการ | | นายแพทย์สงวนสิน | รัตนเลิศ | อนุกรรมการ | | นายแพทย์ธีรเคช | ศรีกิจวิไลกุล | อนุกรรมการ | | นายแพทย์เอก | หังสสูต | อนุกรรมการ | | นายแพทย์ประจักษ์ | ศรีรพีพัฒน์ | อนุกรรมการ | | นายแพทย์่อำนาจ | กิจควรดี | อนุกรรมการ | | นายแพทย์สมเกียรติ | วงศ์สุริยนันท์ | อนุกรรมการ | | นายแพทย์พีรพงษ์ | มนตรีวิวัฒนชัย | อนุกรรมการ | | นายแพทย์ธนกร | เทียนศรี | อนุกรรมการ | | นายแพทย์ศรัณย์ | นันทอารี | เลขานุการ และ อนุกรรมการ |